UBC Okanagan engineers' airflow device capturing exhaled aerosols in a simulated indoor space, outperforming traditional ventilation.
Billede genereret af AI

UBC Okanagan engineers develop airflow device to capture indoor airborne pathogens

Billede genereret af AI
Faktatjekket

Engineers at the University of British Columbia’s Okanagan campus have designed a new airflow device that traps exhaled aerosols almost immediately, sharply reducing exposure to airborne pathogens in simulations. Early results suggest the system can substantially outperform conventional ventilation approaches in shared indoor spaces.

With winter approaching and people spending more time indoors, the quality of the air they breathe becomes increasingly important, especially during cold and flu season. Researchers at UBC Okanagan are examining a new air‑cleaning device that can capture airborne pathogens, offering a potential new tool for reducing the spread of respiratory diseases in enclosed spaces.

The team of mechanical engineers, who work with UBC’s Airborne Disease Transmission Research Cluster, has developed an induction‑removal, or “jet‑sink,” airflow concept that is intended to redirect airflow around occupants and draw contaminated particles into a localized purification zone before they circulate through the room.

Study co‑author Dr. Sunny Li, a professor in the School of Engineering, says traditional efforts to lower infection risk often focus on upgrading a building’s ventilation to manage large‑scale airflow. Personalized ventilation systems, such as those used on passenger airplanes, direct clean air toward individuals from a fixed distance but require people to remain in position and can cause discomfort from the constant air stream, including dry eyes and skin. “Ensuring high air quality while indoors is crucial for mitigating the transmission of airborne disease, particularly in shared environments,” Dr. Li says. “Many Canadians spend nearly 90 per cent of their time inside, making indoor air quality a critical factor for health and wellbeing.”

Postdoctoral researcher Dr. Mojtaba Zabihi, the study’s first author, says variations in room layouts and existing heating, ventilation and air‑conditioning systems make it challenging to implement uniform upgrades, which underscores the value of personalized ventilation options. “We wanted to develop an innovative system that prevents occupants from inhaling contaminated air while allowing them to use a personalized ventilation system comfortably for extended periods,” he explains.

Unlike conventional personalized ventilation systems that rely on fast‑moving air streams which can lose effectiveness when users move, the new design aims to capture exhaled aerosols before they disperse. “Our design combines comfort with control,” Dr. Zabihi says. “It creates a targeted airflow that traps and removes exhaled aerosols almost immediately—before they have a chance to spread.”

According to the team’s study, published in Building and Environment (2025; 286: 113569, DOI: 10.1016/j.buildenv.2025.113569), the researchers used computer simulations to model breathing, body heat and airflow during a 30‑minute consultation scenario and compared the new system with standard personal and room‑level ventilation. The simulations indicated that the device reduced the probability of infection to 9.5 per cent, compared with 47.6 per cent for a typical personalized setup, 38 per cent for a personal ventilation system with an exhaust design and 91 per cent under standard room ventilation.

When positioned optimally in the modelled scenario, the device prevented pathogen inhalation for the first 15 minutes of exposure. Only 10 particles out of 540,000 released in the simulation were estimated to reach another person, and the system removed up to 94 per cent of airborne pathogens.

Co‑author Dr. Joshua Brinkerhoff says these findings highlight how airflow engineering, in addition to filtration, can improve indoor air quality and occupant safety. “Traditional personalized ventilation systems can’t adapt when people move or interact,” he notes. “It’s a smart, responsive solution for spaces like clinics, classrooms or offices where close contact is unavoidable.”

The researchers say future work will focus on refining the design for larger rooms and testing physical prototypes in clinical and public settings. As a member of Canada’s National Model Codes Committee on Indoor Environment, Dr. Zabihi hopes the research will eventually help inform ventilation standards aimed at making indoor spaces safer and healthier.

Hvad folk siger

Initial reactions on X to the UBC Okanagan airflow device are neutral to positive, primarily consisting of shares from science accounts and the university's official channel, emphasizing its potential to trap airborne pathogens more effectively than traditional ventilation systems in indoor spaces. No significant negative or skeptical opinions found yet.

Relaterede artikler

Realistic microscopic illustration of influenza viruses surfing along a human cell membrane before entry.
Billede genereret af AI

Scientists film influenza viruses ‘surfing’ into human cells in real time

Rapporteret af AI Billede genereret af AI Faktatjekket

An international team led by ETH Zurich and including researchers in Japan has used a new high‑resolution imaging technique to watch, live, as influenza viruses penetrate human cells. The work shows that cells actively engage with the virus, helping to draw it inside in a process that resembles surfing along the cell membrane, and could inform the development of targeted antiviral therapies.

In a unique study, influenza-infected college students shared a hotel room with healthy middle-aged volunteers for two weeks, yet no infections occurred. Researchers attribute this to limited coughing, good ventilation, and participants' age. The findings underscore the role of airflow and masks in preventing flu spread.

Rapporteret af AI

CNET has released results from comprehensive lab tests on 12 new air purifiers, identifying five top performers for various needs. The evaluations focused on particle removal speed, noise levels, and energy efficiency, with awards for standout models in filtering performance. These findings come amid growing interest in indoor air quality amid seasonal allergies and pollutants.

Scientists at the University of Basel have developed a novel testing method to determine whether antibiotics actually eliminate bacteria or merely halt their growth. This approach, called antimicrobial single-cell testing, tracks individual bacteria under a microscope to assess drug effectiveness more accurately. The findings, published in Nature Microbiology, highlight variations in bacterial tolerance to treatments for tuberculosis and other lung infections.

Rapporteret af AI Faktatjekket

Belgian researchers working with Danish partners report that respiratory syncytial virus (RSV) infections in early infancy are linked to a higher risk of childhood asthma, especially in children with a genetic tendency to allergies. In experimental models, protecting newborns from RSV prevented the immune changes associated with later asthma. The findings, published in Science Immunology, highlight potential long-term benefits of emerging RSV prevention tools.

Scientists from the universities of Cambridge and Glasgow have shown why many bird flu viruses can keep replicating at fever-like temperatures that typically curb human flu. A study in Science identifies the viral PB1 gene as crucial to this heat tolerance, raising concerns about pandemic risks if such genes move into human strains.

Rapporteret af AI

Engineers at Worcester Polytechnic Institute have developed a novel building material that sequesters carbon dioxide rather than emitting it. The enzymatic structural material, or ESM, cures quickly and offers a sustainable alternative to traditional concrete. This innovation could significantly reduce the construction industry's environmental impact.

 

 

 

Dette websted bruger cookies

Vi bruger cookies til analyse for at forbedre vores side. Læs vores privatlivspolitik for mere information.
Afvis