Leukemia

关注
Lab illustration showing forskolin enhancing daunorubicin chemotherapy against aggressive leukemia cells in University of Surrey research.
AI 生成的图像

Natural compound may enhance chemotherapy for aggressive leukemia

由 AI 报道 AI 生成的图像 事实核查

Researchers linked to the University of Surrey report that forskolin, a plant-derived compound, can slow the growth of KMT2A‑rearranged acute myeloid leukaemia cells in the lab and increase their sensitivity to the chemotherapy drug daunorubicin. The findings, from a study published in the British Journal of Pharmacology, suggest a possible way to make existing treatments more effective, though further research is required before any change to clinical practice.

A new generative AI tool called CytoDiffusion analyzes blood cells with greater accuracy than human experts, potentially improving diagnoses of diseases like leukemia. Developed by researchers from UK universities, the system detects subtle abnormalities and quantifies its own uncertainty. It was trained on over half a million images and excels at flagging rare cases for review.

由 AI 报道 事实核查

Scientists at University College London and Great Ormond Street Hospital have developed a base-edited therapy called BE-CAR7 that uses universal CAR T-cells to treat relapsed or refractory T-cell acute lymphoblastic leukemia. Early trial results published in the New England Journal of Medicine and presented at the American Society of Hematology Annual Meeting indicate deep remissions in most patients, including those who did not respond to standard treatments, by tackling long-standing challenges in T-cell–based therapies.

此网站使用 cookie

我们使用 cookie 进行分析以改进我们的网站。阅读我们的 隐私政策 以获取更多信息。
拒绝