Scientists rule out sterile neutrino after decade of research

An international team of physicists, including Rutgers researchers, has concluded that a hypothesized fourth type of neutrino, known as the sterile neutrino, likely does not exist. Using the MicroBooNE experiment at Fermilab, they analyzed data from two neutrino beams over ten years and found no evidence for it with 95% certainty. The findings, published in Nature, challenge previous explanations for unusual neutrino behavior.

The MicroBooNE experiment, conducted at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Batavia, Illinois, employed a large liquid-argon detector to track neutrino interactions. Neutrinos, tiny particles that pass through matter with minimal interaction, come in three known flavors—electron, muon, and tau—according to the Standard Model of particle physics. These can oscillate, or change types, during travel.

Earlier observations of neutrino anomalies led scientists to propose a sterile neutrino, which would interact only via gravity and evade standard detection. To test this, the MicroBooNE team collected data from two beams: one from the Booster source and another from the NuMI (Neutrinos from the Main Injector) beam. After a decade of measurements, they detected no signs of sterile neutrino production or oscillation, effectively ruling out this hypothesis at a 95% confidence level.

Andrew Mastbaum, an associate professor of physics at Rutgers University and a MicroBooNE leadership member, highlighted the implications. "This result will spark innovative ideas across neutrino research to understand what is really going on," he said. "We can rule out a great suspect, but that doesn't quite solve a mystery."

Rutgers graduate students contributed significantly: Panagiotis Englezos managed data processing and simulations, while Keng Lin validated the NuMI beam's neutrino flux. Mastbaum coordinated analysis tools, addressing systematic uncertainties like neutrino-nucleus interactions and detector responses.

The discovery narrows searches for physics beyond the Standard Model, which fails to account for dark matter, dark energy, and gravity. It also refines liquid-argon detection techniques for upcoming projects like the Deep Underground Neutrino Experiment (DUNE). As Mastbaum noted, "With careful modeling and clever analysis approaches, the MicroBooNE team has squeezed an incredible amount of information out of this detector." These methods will probe deeper questions about matter and the universe's origins.

Articoli correlati

Scientists at Fermilab's MicroBooNE experiment have determined that the long-hypothesized sterile neutrino does not exist, based on high-precision measurements of neutrino behavior. The findings, published in Nature, show neutrinos acting as expected without evidence of a fourth type, closing a decades-old theory. This result paves the way for new investigations and advanced experiments like DUNE.

Riportato dall'IA

Physicists from the KATRIN collaboration have reported no evidence for a sterile neutrino in a precise analysis of tritium decay data. The findings, published in Nature, contradict earlier experimental claims and strengthen the case against a fourth neutrino type. The experiment, based in Germany, continues to gather more data for further tests.

Researchers have discovered that entropy remains constant during the transition from a chaotic quark-gluon state to stable particles in proton collisions at the Large Hadron Collider. This unexpected stability serves as a direct signature of quantum mechanics' unitarity principle. The finding, based on refined models and LHC data, challenges initial intuitions about the process's disorder.

Riportato dall'IA

A team led by Rice University physicist Pengcheng Dai has confirmed emergent photon-like behavior in a quantum spin liquid material. The discovery in cerium zirconium oxide verifies a true three-dimensional quantum spin ice. This breakthrough resolves a long-standing puzzle in condensed matter physics.

 

 

 

Questo sito web utilizza i cookie

Utilizziamo i cookie per l'analisi per migliorare il nostro sito. Leggi la nostra politica sulla privacy per ulteriori informazioni.
Rifiuta