Científicos descartan el neutrino estéril tras una década de investigación

Un equipo internacional de físicos, incluidos investigadores de Rutgers, ha concluido que un cuarto tipo de neutrino hipotético, conocido como neutrino estéril, probablemente no existe. Utilizando el experimento MicroBooNE en Fermilab, analizaron datos de dos haces de neutrinos durante diez años y no encontraron evidencia de él con un 95% de certeza. Los hallazgos, publicados en Nature, desafían explicaciones previas para el comportamiento anómalo de los neutrinos.

El experimento MicroBooNE, realizado en el Fermi National Accelerator Laboratory del Departamento de Energía de EE.UU. en Batavia, Illinois, empleó un gran detector de argón líquido para rastrear interacciones de neutrinos. Los neutrinos, partículas diminutas que atraviesan la materia con mínima interacción, existen en tres sabores conocidos —electrón, muón y tau— según el Modelo Estándar de la física de partículas. Estos pueden oscilar, o cambiar de tipo, durante su viaje.

Observaciones previas de anomalías en neutrinos llevaron a los científicos a proponer un neutrino estéril, que interactuaría solo mediante la gravedad y eludiría la detección estándar. Para probar esto, el equipo de MicroBooNE recopiló datos de dos haces: uno de la fuente Booster y otro del haz NuMI (Neutrinos from the Main Injector). Tras una década de mediciones, no detectaron signos de producción u oscilación de neutrinos estériles, descartando efectivamente esta hipótesis con un nivel de confianza del 95%.

Andrew Mastbaum, profesor asociado de física en la Universidad de Rutgers y miembro del liderazgo de MicroBooNE, destacó las implicaciones. «Este resultado impulsará ideas innovadoras en la investigación de neutrinos para entender qué está pasando realmente», dijo. «Podemos descartar a un gran sospechoso, pero eso no resuelve del todo el misterio».

Estudiantes de posgrado de Rutgers contribuyeron significativamente: Panagiotis Englezos gestionó el procesamiento de datos y simulaciones, mientras que Keng Lin validó el flujo de neutrinos del haz NuMI. Mastbaum coordinó las herramientas de análisis, abordando incertidumbres sistemáticas como las interacciones neutrino-núcleo y las respuestas del detector.

El descubrimiento estrecha las búsquedas de física más allá del Modelo Estándar, que no explica la materia oscura, la energía oscura ni la gravedad. También perfecciona las técnicas de detección con argón líquido para proyectos futuros como el Deep Underground Neutrino Experiment (DUNE). Como señaló Mastbaum, «Con modelado cuidadoso y enfoques de análisis ingeniosos, el equipo de MicroBooNE ha extraído una cantidad increíble de información de este detector». Estos métodos indagarán preguntas más profundas sobre la materia y los orígenes del universo.

Artículos relacionados

Científicos del experimento MicroBooNE en Fermilab han determinado que el neutrino estéril, largamente hipotetizado, no existe, basándose en mediciones de alta precisión del comportamiento de los neutrinos. Los hallazgos, publicados en Nature, muestran que los neutrinos actúan como se esperaba sin evidencia de un cuarto tipo, cerrando una teoría de décadas. Este resultado abre el camino para nuevas investigaciones y experimentos avanzados como DUNE.

Reportado por IA

Físicos de la colaboración KATRIN han informado de que no hay evidencia de un neutrino estéril en un análisis preciso de datos de desintegración de tritio. Los hallazgos, publicados en Nature, contradicen afirmaciones experimentales anteriores y refuerzan el caso en contra de un cuarto tipo de neutrino. El experimento, con sede en Alemania, continúa recopilando más datos para pruebas adicionales.

Los investigadores han descubierto que la entropía permanece constante durante la transición de un estado caótico de quarks-gluones a partículas estables en colisiones de protones en el Gran Colisionador de Hadrones. Esta estabilidad inesperada sirve como una firma directa del principio de unitariedad de la mecánica cuántica. El hallazgo, basado en modelos refinados y datos del LHC, desafía las intuiciones iniciales sobre el desorden del proceso.

Reportado por IA

Un equipo liderado por el físico de la Universidad Rice Pengcheng Dai ha confirmado un comportamiento emergente similar a fotones en un material de líquido de espín cuántico. El descubrimiento en óxido de cerio y zirconio verifica un verdadero hielo de espín cuántico tridimensional. Este avance resuelve un enigma de larga data en la física de la materia condensada.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar