Los investigadores han descubierto que la entropía permanece constante durante la transición de un estado caótico de quarks-gluones a partículas estables en colisiones de protones en el Gran Colisionador de Hadrones. Esta estabilidad inesperada sirve como una firma directa del principio de unitariedad de la mecánica cuántica. El hallazgo, basado en modelos refinados y datos del LHC, desafía las intuiciones iniciales sobre el desorden del proceso.
Las colisiones de protones de alta energía en el Gran Colisionador de Hadrones (LHC) crean un estado breve y denso de quarks y gluones, similar a un mar hirviente de partículas, antes de enfriarse en hadrones detectables. Intuitivamente, este cambio de una fase temprana aparentemente caótica a una posterior más ordenada debería alterar la entropía del sistema, una medida del desorden. Sin embargo, los datos de los experimentos del LHC revelan que la entropía permanece sin cambios a lo largo del proceso, desafiando las expectativas.
El profesor Krzysztof Kutak y el Dr. Sandor Lokos del Instituto de Física Nuclear de la Academia Polaca de Ciencias (IFJ PAN) en Cracow publicaron su análisis en Physical Review D. Refinaron modelos de dipolos, que representan a los gluones como pares quark-antiquark con cargas de color, para describir mejor la evolución del sistema de gluones. «Los modelos de dipolos basados en el número promedio de hadrones producidos en una colisión nos permiten estimar la entropía de los partones», explicó el profesor Kutak.
Hace dos años, Kutak y el Dr. Pawel Caputa de la Universidad de Estocolmo mejoraron el modelo integrando efectos relevantes a energías más bajas y recurriendo a la teoría de la complejidad. Probándolo contra datos de los experimentos ALICE, ATLAS, CMS y LHCb en energías de 0,2 a 13 teraelectronvoltios, el modelo generalizado superó a sus predecesores. «Mostramos que el modelo de dipolos generalizado describe los datos existentes con mayor precisión que los modelos de dipolos anteriores y funciona bien en un rango más amplio de energías de colisión de protones», afirmó el profesor Kutak.
Esta constancia se alinea con la fórmula de Kharzeev-Levin y proviene de la unitariedad de la mecánica cuántica, que preserva la probabilidad y permite procesos reversibles. «La unitariedad de la mecánica cuántica es algo que los estudiantes de física aprenden... es una cosa tratar con una teoría que exhibe una característica determinada a nivel de quarks y gluones... y otra muy distinta observarla en datos reales», señaló el profesor Kutak.
Las validaciones futuras vendrán de la actualización del LHC que mejorará el detector ALICE para estudios de gluones más densos y del Colisionador Electrón-Ion en construcción en el Laboratorio Nacional de Brookhaven, donde las colisiones electrón-protón sondarán los sistemas de gluones de manera más directa.