科学家改造肥大细胞对抗癌瘤

浙江大学研究人员开发了一种新型方法,将通常引发过敏的肥大细胞重新编程为直接向肿瘤递送抗癌病毒的载体。该方法在《细胞》杂志上发表的研究中详细描述,在动物模型中增强了免疫反应,并显示出前景。该方法为个性化癌症治疗铺平了道路。

肥大细胞是一种白细胞,最著名的是引发过敏反应,如花粉引起的流鼻涕或海鲜引起的皮疹。浙江大学教授顾珍和于吉成领导的团队,与中国医科大学刘福建教授合作,在《细胞》杂志上发表的研究中,描述了一种将这些细胞转化为抗癌病毒递送载体的技术。

在过敏反应中,免疫球蛋白E(IgE)抗体与肥大细胞结合,充当传感器检测外来物质。研究人员为肥大细胞配备了识别特定肿瘤蛋白的IgE抗体,从而重新编程它们以寻找和靶向癌细胞。这些工程化肥大细胞被加载溶瘤病毒,这些病毒设计用于感染并杀死癌细胞,同时保留健康细胞。与通过血液或直接注射到肿瘤的传统癌症治疗不同,肥大细胞在循环中保护病毒,提高递送效率。

当重新编程的肥大细胞到达肿瘤时,它们以类似于过敏反应的爆发释放病毒和其他免疫激活分子。这在肿瘤处提供高浓度治疗,同时限制全身副作用。该反应还信号其他免疫细胞,包括T细胞,加入对肿瘤的攻击。在黑色素瘤、乳腺癌和小鼠肺转移的研究中,这种方法减缓了肿瘤生长并改善了生存率。

“肥大细胞不仅仅是治疗的载体;它们放大免疫反应,”于教授说。“当病毒分解肿瘤细胞并释放肿瘤蛋白时,肥大细胞释放的分子招募免疫细胞,如CD8+ T细胞,进入肿瘤。这创造了病毒疗法和免疫疗法的双重攻击。”

研究人员表示,该方法可适应个性化癌症治疗。IgE抗体可设计为靶向患者肿瘤的独特蛋白。在使用高HER2水平患者来源肿瘤模型的实验中,携带抗HER2 IgE的肥大细胞成功递送病毒并触发强烈免疫反应,导致肿瘤明显缩小。

“这为未来的精准治疗打开了大门,”顾教授说。“每个患者的肿瘤蛋白可以像‘过敏信号’一样引导肥大细胞到肿瘤,实现个性化的肿瘤-过敏免疫疗法。”

该肥大细胞平台还可用于递送其他治疗,如小分子药物或抗体。团队正在努力将该技术推向临床应用,重点改善生产、选择患者特异性IgE抗体,并探索与现有免疫疗法的组合。

相关文章

Illustration of UBC scientists in a lab generating helper T cells from stem cells by tuning Notch signaling, advancing immune therapies.
AI 生成的图像

UBC researchers show how to reliably generate helper T cells from stem cells by tuning Notch signaling

由 AI 报道 AI 生成的图像 事实核查

Scientists at the University of British Columbia report a method to consistently produce human helper T cells from pluripotent stem cells by carefully adjusting the timing of a developmental signal known as Notch. The work, published in Cell Stem Cell, is positioned as a step toward scalable “off-the-shelf” immune-cell therapies for cancer and other diseases.

Scientists at KAIST in South Korea have developed a novel therapy that transforms a tumor's own immune cells into potent cancer fighters directly inside the body. By injecting lipid nanoparticles into tumors, the treatment reprograms macrophages to produce cancer-recognizing proteins, overcoming barriers in solid tumor treatment. Early animal studies show promising reductions in tumor growth.

由 AI 报道

Researchers at the University of Southampton have created a new class of antibodies designed to strengthen the immune system's attack on cancer cells. These antibodies cluster receptors on T cells to amplify activation signals that tumors typically weaken. Early laboratory tests indicate they outperform standard antibodies in mobilizing cancer-killing immune cells.

Researchers at Washington University School of Medicine in St. Louis, working with scientists at Northwestern University, have developed a noninvasive nasal nanotherapy that activates the immune system to attack aggressive brain tumors in mice. By delivering spherical nucleic acids that trigger the STING immune pathway directly from the nose to the brain, the approach eliminated glioblastoma tumors in mouse models when combined with drugs that boost T-cell activity, according to a study in the Proceedings of the National Academy of Sciences.

由 AI 报道 事实核查

Researchers at the Institut Pasteur and Inserm have developed a triple-drug strategy that induces necroptosis in malignant B cells, triggering a strong anti-tumor immune response in preclinical models of leukemia. By reprogramming how cancer cells die, the approach enabled complete leukemia elimination in animals and may offer a new avenue for treating B cell-related blood cancers, according to findings published in Science Advances.

Scientists at University College London and Great Ormond Street Hospital have developed a base-edited therapy called BE-CAR7 that uses universal CAR T-cells to treat relapsed or refractory T-cell acute lymphoblastic leukemia. Early trial results published in the New England Journal of Medicine and presented at the American Society of Hematology Annual Meeting indicate deep remissions in most patients, including those who did not respond to standard treatments, by tackling long-standing challenges in T-cell–based therapies.

由 AI 报道 事实核查

Scientists at Washington State University used artificial intelligence and molecular simulations to identify a crucial amino acid interaction in a herpes virus fusion protein that is required for cell invasion. When they engineered a mutation at this site, the virus could no longer fuse with or enter cells, according to a study published in Nanoscale.

 

 

 

此网站使用 cookie

我们使用 cookie 进行分析以改进我们的网站。阅读我们的 隐私政策 以获取更多信息。
拒绝