Study uncovers brain's timing system for cognition

Researchers at Rutgers Health have identified how the brain integrates fast and slow processing through white matter connections, influencing cognitive abilities. Published in Nature Communications, the study analyzed data from nearly 1,000 people to map these neural timescales. Variations in this system may explain differences in thinking efficiency and hold promise for mental health research.

The human brain juggles information arriving at vastly different speeds, from immediate environmental cues to deliberate reflections on context and intent. A new investigation from Rutgers Health, detailed in Nature Communications, reveals how it achieves this balance via intrinsic neural timescales—unique processing windows for each brain region—and the white matter networks that link them.

Led by Linden Parkes, an assistant professor of psychiatry at Rutgers Health, the team examined brain imaging from 960 individuals to construct detailed connectomes. They employed mathematical models to trace information flow across these networks. "To affect our environment through action, our brains must combine information processed over different timescales," Parkes explained. "The brain achieves this by leveraging its white matter connectivity to share information across regions, and this integration is crucial for human behavior."

The findings show that the arrangement of these timescales across the cerebral cortex determines how smoothly the brain transitions between activity patterns linked to behavior. Not everyone has the same setup: "We found that differences in how the brain processes information at different speeds help explain why people vary in their cognitive abilities," Parkes noted. Those with better-aligned wiring for fast and slow signals tend to exhibit higher cognitive capacity.

These patterns also tie into genetic, molecular, and cellular brain features, with parallels observed in mice, indicating evolutionary conservation. "Our work highlights a fundamental link between the brain's white matter connectivity and its local computational properties," Parkes added.

Looking ahead, the researchers plan to apply this framework to disorders like schizophrenia, bipolar disorder, and depression to explore disruptions in temporal processing. Collaborators included Avram Holmes, Ahmad Beyh, Amber Howell, and Jason Z. Kim from Cornell University. The study appeared in Nature Communications (2025; 16(1)), with DOI: 10.1038/s41467-025-66542-w.

Labaran da ke da alaƙa

Illustration of a brain connectivity map from an Ohio State University study, showing neural patterns predicting cognitive activities, for a news article on neuroscience findings.
Hoton da AI ya samar

Study maps how brain connectivity predicts activity across cognitive functions

An Ruwaito ta hanyar AI Hoton da AI ya samar An Binciki Gaskiya

Scientists at The Ohio State University have charted how patterns of brain wiring can predict activity linked to many mental functions across the entire brain. Each region shows a distinct “connectivity fingerprint” tied to roles such as language and memory. The peer‑reviewed findings in Network Neuroscience offer a baseline for studying healthy young adult brains and for comparisons with neurological or psychiatric conditions.

Neuroscientists at Princeton University report that the brain achieves flexible learning by reusing modular cognitive components across tasks. In experiments with rhesus macaques, researchers found that the prefrontal cortex assembles these reusable “cognitive Legos” to adapt behaviors quickly. The findings, published November 26 in Nature, underscore differences from current AI systems and could eventually inform treatments for disorders that impair flexible thinking.

An Ruwaito ta hanyar AI An Binciki Gaskiya

Researchers at Rockefeller University have uncovered a stepwise system of molecular mechanisms that helps determine how long memories persist in the brain. Using virtual reality–based learning tasks in mice, the team identified key gene regulators that stabilize important experiences over time, in findings published in Nature.

An evolutionarily ancient midbrain region, the superior colliculus, can independently carry out visual computations long attributed mainly to the cortex, according to a PLOS Biology study. The work suggests that attention-guiding mechanisms with roots more than 500 million years old help separate objects from backgrounds and highlight salient details.

An Ruwaito ta hanyar AI An Binciki Gaskiya

A new study reports that as people listen to a spoken story, neural activity in key language regions unfolds over time in a way that mirrors the layer-by-layer computations inside large language models. The researchers, who analyzed electrocorticography recordings from epilepsy patients during a 30-minute podcast, also released an open dataset intended to help other scientists test competing theories of how meaning is built in the brain.

A new study has shown that the brain regions controlling facial expressions in macaques work together in unexpected ways, challenging prior assumptions about their division of labor. Researchers led by Geena Ianni at the University of Pennsylvania used advanced neural recordings to reveal how these gestures are encoded. The findings could pave the way for future brain-computer interfaces that decode facial signals for patients with neurological impairments.

An Ruwaito ta hanyar AI An Binciki Gaskiya

Research published October 22, 2025, in Neurology® Open Access reports that older adults with gum disease had more white matter hyperintensities—a marker of tissue damage—than peers without gum disease, even after accounting for other risks.

 

 

 

Wannan shafin yana amfani da cookies

Muna amfani da cookies don nazari don inganta shafin mu. Karanta manufar sirri mu don ƙarin bayani.
Ƙi