Astronomers have identified what appears to be a massive cloud of dark matter roughly 3,000 light years from our solar system. Using pulsar observations, a team led by Sukanya Chakrabarti detected gravitational effects suggesting an object 60 million times the sun's mass. This could be the first such sub-halo found in the Milky Way.

Сообщено ИИ

A new study proposes that hypothetical dark stars, powered by dark matter, could account for three surprising observations from the James Webb Space Telescope in the early universe. These include ultra-bright blue monster galaxies, overmassive black holes, and mysterious little red dots. Researchers suggest these exotic stars formed quickly after the Big Bang and seeded supermassive black holes.

Scientists at the University of Chicago have used weak gravitational lensing to map dark matter and dark energy across a vast sky region, confirming the standard cosmological model. By analyzing archival telescope images, the team expanded galaxy shape measurements, resolving debates about cosmic structure growth. Their findings align observations of the nearby universe with early universe data from the cosmic microwave background.

Сообщено ИИ

Researchers at the University of Amsterdam have created a new theoretical model to detect dark matter around black holes through gravitational waves. The approach focuses on extreme mass-ratio inspirals and relies on Einstein's general relativity for precise predictions. This could provide insights into dark matter's distribution as future observatories like LISA come online.

 

 

 

Этот сайт использует куки

Мы используем куки для анализа, чтобы улучшить наш сайт. Прочитайте нашу политику конфиденциальности для дополнительной информации.
Отклонить