International team develops damage-free etching technique for semiconductors

An international research team has developed a 'self-etching' technique to process soft and unstable ionic crystal lattice semiconductors, specifically 2D perovskite thin-layer single crystals, without damaging their structure, overcoming a key challenge in optoelectronic materials. Led by researchers from the University of Science and Technology of China, Purdue University, and Shanghai Tech University, the study was published on Thursday in Nature.

The study introduces a guided 'self-etching' approach that leverages internal stress accumulated during crystal growth. By using a mild ligand-isopropyl alcohol (IPA) solution system, the researchers induced controlled in-plane self-etching at specific sites in 2D perovskite single crystals. Subsequently, they precisely filled the etched cavities with 2D perovskites of varying halogen compositions. This allowed the creation of high-quality heterojunctions within a single crystal wafer, featuring lattice continuity and atomically smooth interfaces.

In semiconductor optoelectronics, heterojunctions—interfaces formed between materials of different chemical compositions at the atomic level—allow precise control over the optical properties of each cavity. By tuning the halogens in these etched regions, researchers can design pixel-like units with adjustable emission color and brightness, a crucial step toward miniaturized and efficient optoelectronic devices.

Compared to conventional methods such as strong solvent treatment or ultraviolet patterning, this new strategy is gentler and preserves the crystal lattice from damage.

"This processing method suggests that in the future, we may integrate densely arranged microscopic light-emitting pixels of different colors on an ultra-thin material. It opens up a new material platform and design pathway for high-performance luminescent and display devices," said Zhang Shuchen, a member of the research team.

This breakthrough offers an innovative pathway for optoelectronic semiconductor processing, potentially advancing next-generation display and lighting technologies.

Articles connexes

Illustration of Northwestern University's wireless micro-LED brain implant delivering light patterns to mouse neurons for sensory signaling.
Image générée par IA

Northwestern team develops wireless implant that ‘speaks’ to the brain with light

Rapporté par l'IA Image générée par IA Vérifié par des faits

Scientists at Northwestern University have created a soft, wireless brain implant that delivers patterned light directly to neurons, enabling mice to interpret these signals as meaningful cues without relying on sight, sound or touch. The fully implantable device uses an array of up to 64 micro-LEDs to generate complex activity patterns across the cortex, a development that could advance next-generation prosthetics and sensory therapies, according to Northwestern and Nature Neuroscience.

Des chercheurs du Centre RIKEN pour la science de la matière émergente au Japon ont mis au point une méthode pionnière pour tailler des dispositifs nanoéchelles tridimensionnels à partir de cristaux uniques à l'aide de faisceaux d'ions focalisés. En façonnant des structures hélicoïdales à partir d'un cristal magnétique, ils ont créé des diodes commutables qui dirigent l'électricité préférentiellement dans une direction. Cette approche géométrique pourrait permettre des électroniques plus efficaces.

Rapporté par l'IA

Des chercheurs ont mis au point une technique de laser ultrarapide qui émet des impulsions lumineuses en un milliardième de seconde, permettant de créer des structures 1 000 fois plus solides et 1 000 fois plus rapides. Cette méthode novatrice cible la conductivité thermique des puces en contrôlant les distances de diffusion des phonons, offrant des applications en calcul haute performance, dispositifs quantiques et refroidissement des puces d’IA. Elle change la manière dont les puces gèrent la chaleur sans recourir à des ventilateurs ou au refroidissement liquide.

Des scientifiques de l'Institut Max Planck à Mayence ont mesuré directement l'écart supraconducteur dans le sulfure d'hydrogène, une étape clé vers les supraconducteurs à haute température. Utilisant une nouvelle technique de tunnel sous pressions extrêmes, ils ont confirmé que les interactions électron-phonon conduisent le phénomène. Cette avancée s'appuie sur les découvertes de 2015 et fait progresser la quête de supraconductivité à température ambiante.

Rapporté par l'IA

Des chercheurs ont observé expérimentalement une géométrie quantique cachée dans des matériaux qui guide les électrons de manière similaire à la façon dont la gravité plie la lumière. La découverte, réalisée à l'interface de deux matériaux oxydes, pourrait faire avancer l'électronique quantique et la supraconductivité. Publiée dans Science, les résultats mettent en lumière un effet longtemps théorisé désormais confirmé dans la réalité.

As detailed in the initial report on this breakthrough, experts at a Beijing evaluation conference on Tuesday praised the 'off-field electrocatalysis' technology developed by academician Li Can's team at the Dalian Institute of Chemical Physics. They recommended immediate industrial scale-up, following over 1,000 hours of uninterrupted operation at a Xinxiang pilot plant that eliminates nearly 100% of hydrogen sulfide emissions while producing high-value hydrogen and sulfur.

Rapporté par l'IA Vérifié par des faits

Des chercheurs en Finlande affirment qu’un laser infrarouge proche contrôlé en température peut déclencher les réponses de réparation de l’œil et pourrait ralentir la dégénérescence maculaire liée à l’âge sous sa forme sèche précoce ; des données animales soutiennent des essais de sécurité humaine prévus pour le printemps 2026.

 

 

 

Ce site utilise des cookies

Nous utilisons des cookies pour l'analyse afin d'améliorer notre site. Lisez notre politique de confidentialité pour plus d'informations.
Refuser