International team develops damage-free etching technique for semiconductors

An international research team has developed a 'self-etching' technique to process soft and unstable ionic crystal lattice semiconductors, specifically 2D perovskite thin-layer single crystals, without damaging their structure, overcoming a key challenge in optoelectronic materials. Led by researchers from the University of Science and Technology of China, Purdue University, and Shanghai Tech University, the study was published on Thursday in Nature.

The study introduces a guided 'self-etching' approach that leverages internal stress accumulated during crystal growth. By using a mild ligand-isopropyl alcohol (IPA) solution system, the researchers induced controlled in-plane self-etching at specific sites in 2D perovskite single crystals. Subsequently, they precisely filled the etched cavities with 2D perovskites of varying halogen compositions. This allowed the creation of high-quality heterojunctions within a single crystal wafer, featuring lattice continuity and atomically smooth interfaces.

In semiconductor optoelectronics, heterojunctions—interfaces formed between materials of different chemical compositions at the atomic level—allow precise control over the optical properties of each cavity. By tuning the halogens in these etched regions, researchers can design pixel-like units with adjustable emission color and brightness, a crucial step toward miniaturized and efficient optoelectronic devices.

Compared to conventional methods such as strong solvent treatment or ultraviolet patterning, this new strategy is gentler and preserves the crystal lattice from damage.

"This processing method suggests that in the future, we may integrate densely arranged microscopic light-emitting pixels of different colors on an ultra-thin material. It opens up a new material platform and design pathway for high-performance luminescent and display devices," said Zhang Shuchen, a member of the research team.

This breakthrough offers an innovative pathway for optoelectronic semiconductor processing, potentially advancing next-generation display and lighting technologies.

Artigos relacionados

Illustration of Northwestern University's wireless micro-LED brain implant delivering light patterns to mouse neurons for sensory signaling.
Imagem gerada por IA

Northwestern team develops wireless implant that ‘speaks’ to the brain with light

Reportado por IA Imagem gerada por IA Verificado

Scientists at Northwestern University have created a soft, wireless brain implant that delivers patterned light directly to neurons, enabling mice to interpret these signals as meaningful cues without relying on sight, sound or touch. The fully implantable device uses an array of up to 64 micro-LEDs to generate complex activity patterns across the cortex, a development that could advance next-generation prosthetics and sensory therapies, according to Northwestern and Nature Neuroscience.

Pesquisadores do Centro RIKEN de Ciência da Matéria Emergente no Japão pioneiraram um método para esculpir dispositivos nanoescala tridimensionais de cristais únicos usando feixes de íons focados. Ao moldar estruturas helicoidais de um cristal magnético, criaram diodos comutáveis que direcionam a eletricidade preferencialmente em uma direção. Essa abordagem geométrica pode possibilitar eletrônicos mais eficientes.

Reportado por IA

Pesquisadores desenvolveram uma técnica de laser ultrarrápido que emite pulsos de luz em um bilionésimo de segundo, possibilitando a criação de estruturas 1.000 vezes mais fortes e 1.000 vezes mais rápidas. Este método inovador foca na condutividade térmica dos chips ao controlar distâncias de espalhamento de fonons, oferecendo aplicações em computação de alto desempenho, dispositivos quânticos e resfriamento de chips de IA. Altera como os chips lidam com o calor sem depender de ventiladores ou resfriamento líquido.

Cientistas do Instituto Max Planck em Mainz mediram diretamente a lacuna supercondutora no sulfeto de hidrogênio, um passo chave para supercondutores de alta temperatura. Usando uma técnica de tunelamento inovadora sob pressões extremas, confirmaram que interações elétron-fônon impulsionam o fenômeno. Este avanço se baseia em descobertas de 2015 e avança na busca pela supercondutividade em temperatura ambiente.

Reportado por IA

Pesquisadores observaram experimentalmente uma geometria quântica oculta em materiais que direciona elétrons de forma semelhante a como a gravidade dobra a luz. A descoberta, feita na interface de dois materiais óxidos, pode avançar a eletrônica quântica e a supercondutividade. Publicada na Science, as descobertas destacam um efeito há muito teorizado agora confirmado na realidade.

As detailed in the initial report on this breakthrough, experts at a Beijing evaluation conference on Tuesday praised the 'off-field electrocatalysis' technology developed by academician Li Can's team at the Dalian Institute of Chemical Physics. They recommended immediate industrial scale-up, following over 1,000 hours of uninterrupted operation at a Xinxiang pilot plant that eliminates nearly 100% of hydrogen sulfide emissions while producing high-value hydrogen and sulfur.

Reportado por IA Verificado

Pesquisadores na Finlândia dizem que um laser de infravermelho próximo controlado por temperatura pode ativar as respostas de reparo do olho e poderia desacelerar a degeneração macular relacionada à idade em sua forma seca inicial; dados de animais apoiam testes de segurança humana planejados para a primavera de 2026.

 

 

 

Este site usa cookies

Usamos cookies para análise para melhorar nosso site. Leia nossa política de privacidade para mais informações.
Recusar