فيزيائيون يتحدون مبدأ كارنو على المستوى الذري

أظهر باحثون في جامعة شتوتغارت أن مبدأ كارنو، الركن الأساسي للديناميكا الحرارية، لا ينطبق كليًا على الجسيمات المترابطة على المستوى الذري. يكشف عملهم أن المحركات الكمومية يمكنها تجاوز حد الكفاءة التقليدي عبر استغلال الارتباطات الكمومية. قد يمهد هذا الاكتشاف الطريق لمحركات نانوية عالية الكفاءة.

مبدأ كارنو، الذي أسسه الفيزيائي الفرنسي سادي كارنو قبل نحو قرنين، يحدد الكفاءة القصوى النظرية للمحركات الحرارية بناءً على فروق درجات الحرارة. وهو جزء من القانون الثاني للديناميكا الحرارية وينطبق على الأنظمة واسعة النطاق مثل توربينات البخار ومحركات الاحتراق الداخلي، التي تحول الطاقة الحرارية إلى حركة ميكانيكية. سمحت التطورات في الميكانيكا الكمومية بتطوير محركات حرارية مجهرية، مصغّرة إلى أبعاد ذرية. أظهر البروفيسور إريك لوتز والدكتور ميلتون أغيلار من معهد الفيزياء النظرية الأول بجامعة شتوتغارت الآن أن هذا المبدأ ينهار في الأنظمة شديدة الترابط على المستوى الذري. في مثل هذه الإعدادات، تكون الجسيمات مرتبطة فيزيائيًا، مما يُدخل تأثيرات كمومية غير محسوبة في الديناميكا الحرارية الكلاسيكية. اشتق الباحثون قوانين ديناميكية حرارية معممة تدمج الارتباطات الكمومية، وهي روابط دقيقة بين الجسيمات في الأنظمة الصغيرة جدًا. تسمح هذه الارتباطات للمحركات الكمومية بتحويل ليس الحرارة فحسب، بل الارتباطات نفسها إلى عمل، متجاوزة حد كارنو. «قد تصبح محركات صغيرة، لا تتجاوز حجم ذرة واحدة، واقعًا في المستقبل»، يقول البروفيسور لوتز. ويضيف: «أصبح واضحًا الآن أن هذه المحركات يمكنها تحقيق كفاءة قصوى أعلى من محركات الحرارة الأكبر». نُشر إثباتهم الرياضي في Science Advances بعنوان «Correlated quantum machines beyond the standard second law». تعزز هذه البحث الفيزياء الأساسية وتقترح تطبيقات في محركات كمومية فائقة الصغر لمهام مثل تشغيل النانوبوتات الطبية أو معالجة المواد ذرة بذرة. من خلال توسيع فهم الكفاءة على المستوى النانوي، تبرز النتائج كيف يمكن للتأثيرات الكمومية تعزيز تحويل الطاقة في التقنيات المستقبلية.

مقالات ذات صلة

طور باحثون في جامعة TU Wien نظامًا كميًا باستخدام ذرات روبيديوم مبردة جدًا تسمح بتدفق الطاقة والكتلة بكفاءة مثالية، متحدية المقاومة العادية. محصورة في خط واحد، تتصادم الذرات بلا توقف دون تباطؤ، محاكية مهد نيوتن. الاكتشاف، المنشور في Science، يبرز شكلاً جديدًا من النقل في الغازات الكمية.

من إعداد الذكاء الاصطناعي

اكتشف علماء في جامعة إنسبروك أن غازاً كمياً متفاعلاً بقوة يمكنه التوقف عن امتصاص الطاقة عند تعريضه مراراً لنبضات الليزر، مما يدخل في حالة مستقرة تُدعى التوطين الديناميكي للعديد من الأجسام. هذا يتحدى التوقعات الكلاسيكية للتسخين الحتمي في الأنظمة المدفوعة. الاكتشاف يبرز دور التماسك الكمي في الحفاظ على النظام وسط الإجبار المستمر.

طوّر فريق من العلماء طريقة جديدة للتلاعب بمواد الكم باستخدام الإكسيتونات، متجاوزين الحاجة إلى ليزرات شديدة. هذا النهج، بقيادة معهد أوكيناوا للعلوم والتكنولوجيا وجامعة ستانفورد، يحقق تأثيرات فلكويت قوية بطاقة أقل بكثير، مما يقلل من خطر تلف المواد. النتائج، المنشورة في Nature Physics، تفتح مسارات نحو أجهزة كم متقدمة.

من إعداد الذكاء الاصطناعي

استخدم الباحثون حواسيب فائقة تقليدية لحساب طاقة الحالة الأرضية لـFeMoco، وهي جزيء حاسم في تثبيت النيتروجين، بدقة كانت تُعتقد لفترة طويلة حصرية للحواسيب الكمومية. يتحدى هذا الاختراق ادعاءات الميزة الكمومية لهذه المحاكيات الكيميائية. قد يسرع هذا الاكتشاف الجهود لفهم وتكرار تثبيت النيتروجين لأسمدة أكثر كفاءة.

 

 

 

يستخدم هذا الموقع ملفات تعريف الارتباط

نستخدم ملفات تعريف الارتباط للتحليلات لتحسين موقعنا. اقرأ سياسة الخصوصية الخاصة بنا سياسة الخصوصية لمزيد من المعلومات.
رفض