Close-up photo of mosquitoes attracted to a floral-scented engineered fungus on a leaf, highlighting research on mosquito control.
Bild generiert von KI

Engineered floral-scented fungus lures and kills mosquitoes, study finds

Bild generiert von KI
Fakten geprüft

Researchers have engineered a mosquito-killing Metarhizium fungus that emits a flower-like scent, longifolene, to draw in the insects and infect them. The work, published October 24, 2025, in Nature Microbiology, could provide a safe, affordable complement to chemical pesticides amid rising mosquito-borne disease, the team says. ([doi.org](https://doi.org/10.1038/s41564-025-02155-9))

An international research team that includes Raymond St. Leger, a Distinguished University Professor of Entomology at the University of Maryland, reports that a modified strain of Metarhizium fungus can mimic floral odors to attract mosquitoes and kill them after contact. The paper lists collaborators from multiple institutions and countries. (doi.org)

How it works
- The scientists identified longifolene—a natural plant-derived scent—as a key attractant released by fungus-colonized insect cadavers, then engineered the mosquito pathogen Metarhizium pingshaense to produce more of the compound. In controlled tests, spores placed in simple containers released the scent over months, drawing mosquitoes to land and become infected. (doi.org)
- The Nature Microbiology study found that the engineered fungus attracted and killed male and female Aedes albopictus, Anopheles sinensis, and Culex pipiens. Attraction was not diminished by human odor; flowering plants could compete for attention, but mortality still exceeded 90%. (doi.org)

What the tests showed
- Laboratory experiments reported mosquito kill rates of roughly 90–100%, even amid competing human and floral scents in large-room trials, according to the University of Maryland summary of the work. (cmns.umd.edu)

Safety, resistance and specificity
- The researchers say the approach is “completely harmless to humans,” noting that longifolene is already used in perfumes and has a long safety record. They add that the formulation and containers are designed to target mosquitoes, and that longifolene degrades naturally. Independent regulatory reviews would still be required before deployment. (cmns.umd.edu)
- Because mosquitoes rely on floral cues for nectar, the team argues it may be harder for them to evolve around this lure; if needed, additional floral odors could be engineered into the fungus. (cmns.umd.edu)

Cost and scalability
- Production could be inexpensive and locally scalable, the team notes, because Metarhizium can be cultivated on low-cost agricultural byproducts such as chicken droppings, rice husks, and wheat scraps. (cmns.umd.edu)

Climate context and next steps
- "Mosquitoes love many of the ways we are changing our world," St. Leger said, warning that warming and shifting weather patterns are expanding mosquito habitats and disease risks, including to parts of the United States. (cmns.umd.edu)
- The researchers are pursuing larger-scale outdoor trials and preparing materials for regulatory submissions. Their goal, St. Leger said, is not a single solution but a broader toolkit alongside nets, insecticides, and other biological controls. (cmns.umd.edu)

Verwandte Artikel

Scientific illustration of nanoflowers enhancing stem cells with extra mitochondria to rejuvenate aging tissues in a lab study.
Bild generiert von KI

Nanoflowers supercharge stem cells to recharge aging tissues

Von KI berichtet Bild generiert von KI Fakten geprüft

Biomedical engineers at Texas A&M University have used nanoflowers to make stem cells produce roughly twice the usual number of mitochondria. These enhanced stem cells then transfer the extra energy-producing organelles to damaged or aging cells, restoring their energy production and resilience in lab studies, according to a new report in the Proceedings of the National Academy of Sciences.

Researchers have found that psilocybin, the hallucinogenic compound in magic mushrooms, likely evolved as a defense mechanism against insects that feed on fungi. Experiments with fruit fly larvae showed reduced survival and impaired development when exposed to the substance. This discovery sheds light on the evolutionary purpose of psychedelics in nature.

Von KI berichtet

A genetic technology called a gene drive has shown promise in preventing malaria transmission by mosquitoes during lab tests in Tanzania. Researchers modified local mosquitoes to produce antimalarial proteins, demonstrating effective inhibition of parasites from infected children. The findings suggest the approach could work in the field if released.

Researchers have developed a method to transform carrot processing leftovers into a nutritious protein source using edible fungi, which volunteers preferred in vegan foods over traditional options. This innovation addresses global food security by repurposing waste into sustainable alternatives. The study highlights the potential of fungal mycelium to reduce environmental impact while providing high-quality nutrition.

Von KI berichtet

Researchers at Lund University have discovered evidence of climate change by analyzing decades-old military air samples, showing moss spores release weeks earlier than in the 1990s. The study highlights how warmer autumns from previous years drive these changes more than current spring conditions. This approach offers a new way to track ecological responses over time.

Penn State researchers report a bacterial defense that repurposes dormant viral DNA: a recombinase enzyme called PinQ flips a stretch of genome to produce protective proteins that block infection, work described in Nucleic Acids Research.

Von KI berichtet Fakten geprüft

Scientists at the University of Queensland have captured the first near‑atomic, high‑resolution 3D images of the yellow fever virus, detailing how the surface of the long‑used vaccine strain differs from virulent, disease‑causing strains. The work sheds light on how the virus is recognised by the immune system and could support improved vaccines for yellow fever and related mosquito‑borne diseases.

 

 

 

Diese Website verwendet Cookies

Wir verwenden Cookies für Analysen, um unsere Website zu verbessern. Lesen Sie unsere Datenschutzrichtlinie für weitere Informationen.
Ablehnen