Computadoras cuánticas a punto de avanzar la química en 2026

Los investigadores anticipan que 2026 podría marcar el inicio de aplicaciones prácticas de las computadoras cuánticas en química, aprovechando su naturaleza cuántica inherente para abordar cálculos moleculares complejos. Los avances en 2025 han sentado las bases, con máquinas más grandes esperadas para habilitar simulaciones más sofisticadas. Este progreso podría beneficiar a los campos industrial y médico al mejorar las predicciones de estructuras moleculares y reactividades.

El desafío de entender la estructura, reactividad y otras propiedades químicas de una molécula proviene del comportamiento cuántico de sus electrones. Las supercomputadoras tradicionales luchan con moléculas cada vez más complejas, pero las computadoras cuánticas, al ser dispositivos cuánticos ellas mismas, ofrecen una ventaja natural para estas tareas.

En 2025, pasos significativos hacia adelante demostraron este potencial. Equipos de IBM y el instituto RIKEN de Japón combinaron una computadora cuántica con una supercomputadora para modelar varias moléculas. Investigadores de Google desarrollaron y probaron un algoritmo cuántico para determinar estructuras moleculares. Mientras tanto, RIKEN colaboró con Quantinuum para crear un flujo de trabajo para calcular energías moleculares, donde el sistema cuántico detecta sus propios errores. Por separado, Qunova Computing presentó un algoritmo que utiliza elementos cuánticos para calcular energías aproximadamente 10 veces más eficientemente que los métodos clásicos.

Mirando hacia 2026, los expertos esperan que computadoras cuánticas más grandes aceleren estos esfuerzos. David Muñoz Ramo de Quantinuum señala: «Las máquinas más grandes que se avecinan nos permitirán desarrollar versiones más potentes de este [flujo de trabajo] existente, y en última instancia, podremos abordar problemas generales de química cuántica». Su equipo ha simulado una molécula de hidrógeno hasta ahora, con objetivos más complejos como catalizadores industriales a la vista.

Otras iniciativas se alinean de manera similar. En diciembre, Microsoft se asoció con la startup de software cuántico Algorithmiq para acelerar el desarrollo de algoritmos de química cuántica. Una encuesta de Hyperion Research identifica la química como el área principal para el progreso en computación cuántica en el próximo año, subiendo del segundo y cuarto lugar en encuestas anteriores, lo que refleja un interés e inversión crecientes.

Sin embargo, la realización completa depende de lograr tolerancia a fallos en los sistemas cuánticos, un objetivo universal entre los fabricantes. Como observan Philipp Schleich y Alán Aspuru-Guzik de la Universidad de Toronto en un comentario reciente en Science: «La capacidad de una computadora cuántica para resolver problemas más rápido que una computadora clásica depende de un algoritmo tolerante a fallos». Hasta entonces, los enfoques híbridos cerrarán la brecha, transformando potencialmente la investigación química en la industria y la medicina.

Artículos relacionados

Expertos en la conferencia Q2B Silicon Valley de diciembre elogiaron avances significativos en el hardware de computación cuántica, describiendo el progreso como espectacular a pesar de los desafíos restantes. Líderes de la ciencia y la industria expresaron optimismo sobre lograr dispositivos tolerantes a fallos e industrialmente útiles en los próximos años. Las aplicaciones para la salud, la energía y el descubrimiento científico también están ganando tracción.

Reportado por IA

Investigadores han utilizado supercomputadoras convencionales para calcular la energía del estado fundamental de FeMoco, una molécula crucial en la fijación de nitrógeno, con la precisión que durante mucho tiempo se pensó exclusiva de las computadoras cuánticas. Este avance desafía las afirmaciones de ventaja cuántica para tales simulaciones químicas. El hallazgo podría acelerar los esfuerzos para entender y replicar la fijación de nitrógeno en fertilizantes más eficientes.

El Ejército Popular de Liberación (PLA) está avanzando en tecnología cuántica para aplicaciones militares, incluyendo más de 10 herramientas experimentales de guerra cibernética cuántica en desarrollo. Estas herramientas buscan mejorar el mapeo en primera línea y recopilar inteligencia militar de alto valor del ciberespacio público.

Reportado por IA

Los científicos están a punto de simular un cerebro humano utilizando las supercomputadoras más potentes del mundo, con el objetivo de desentrañar los secretos del funcionamiento cerebral. Liderado por investigadores del Centro de Investigación de Jülich en Alemania, el proyecto aprovecha la supercomputadora JUPITER para modelar 20.000 millones de neuronas. Este avance podría permitir probar teorías sobre la memoria y los efectos de los fármacos que los modelos más pequeños no pueden lograr.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar