Investigadores han utilizado supercomputadoras convencionales para calcular la energía del estado fundamental de FeMoco, una molécula crucial en la fijación de nitrógeno, con la precisión que durante mucho tiempo se pensó exclusiva de las computadoras cuánticas. Este avance desafía las afirmaciones de ventaja cuántica para tales simulaciones químicas. El hallazgo podría acelerar los esfuerzos para entender y replicar la fijación de nitrógeno en fertilizantes más eficientes.
La fijación de nitrógeno, el proceso mediante el cual los microbios convierten el nitrógeno atmosférico en amoníaco utilizable, es esencial para la vida en la Tierra. En su núcleo se encuentra FeMoco, una molécula compleja cuyos mecanismos exactos siguen siendo esquivos. Comprender FeMoco podría permitir su replicación a escala industrial, reduciendo drásticamente los costos energéticos de la producción de fertilizantes y potencialmente aumentando los rendimientos de los cultivos. nnEl cálculo de la energía del estado fundamental de FeMoco ha sido notoriamente difícil debido a sus numerosos electrones que se comportan en patrones ondulatorios cuánticos a través de múltiples orbitales. Aunque las computadoras cuánticas han sido demostradas matemáticamente capaces de soluciones exactas sin aproximaciones, los métodos clásicos han quedado rezagados, dependiendo de estimaciones menos precisas. nnAhora, un equipo liderado por Garnet Kin-Lic Chan en el California Institute of Technology ha desarrollado un enfoque clásico que iguala la «precisión química» —la precisión necesaria para predicciones químicas confiables—. Analizando propiedades de los estados cuánticos de mayor energía de FeMoco, como las simetrías electrónicas, los investigadores calcularon límites superiores para la energía del estado fundamental y extrapolan a un valor preciso. Su método supuestamente completa la tarea en menos de un minuto en una supercomputadora, en comparación con unas ocho horas estimadas en un dispositivo cuántico en condiciones ideales. nnSin embargo, este avance no desentraña completamente el rol de FeMoco en la fijación de nitrógeno. Persisten preguntas sobre qué partes moleculares interactúan con el nitrógeno y qué intermediarios se forman durante el proceso. nnDavid Reichmann en la Columbia University señaló: «El trabajo no nos dice mucho sobre el sistema FeMoco en términos de su función, pero como modelo para mostrar la ventaja cuántica, eleva aún más la vara para los enfoques cuánticos». nnDominic Berry en la Macquarie University añadió: «Esto desafía el argumento para usar computadoras cuánticas en problemas como este, pero para sistemas más complicados, se espera que el tiempo de cómputo para métodos clásicos aumente mucho más rápido que para algoritmos cuánticos». Berry enfatizó que las próximas computadoras cuánticas tolerantes a fallos aún podrían ofrecer soluciones más amplias para tales moléculas. nnLa investigación aparece en un preprint en arXiv (DOI: 10.48550/arXiv.2601.04621).