Illustration of a healthy person with overlaid view of hidden immune changes, including antibodies, inflammation, and epigenetic shifts, years before rheumatoid arthritis symptoms.
AI:n luoma kuva

Study maps hidden immune changes years before rheumatoid arthritis symptoms

AI:n luoma kuva
Faktatarkistettu

A multi-year study has found that rheumatoid arthritis appears to begin years before joint pain or stiffness, with sweeping immune changes unfolding silently in people who carry RA‑linked antibodies. By tracking these at‑risk individuals over seven years, researchers documented systemic inflammation, immune cell dysfunction and epigenetic reprogramming, findings that could support earlier detection and prevention efforts.

Rheumatoid arthritis (RA), a chronic autoimmune disease that causes painful joint inflammation and damage, appears to start long before symptoms emerge, according to new research based on work from the Allen Institute and collaborators.

The study team reports in Science Translational Medicine that people at higher risk for RA are already experiencing a largely invisible autoimmune process well before their first aches or stiffness. Using detailed immune profiling, the researchers mapped how the disease process builds over time in this preclinical phase.

In a seven‑year, multi‑institution study, scientists from the Allen Institute, the University of Colorado Anschutz Medical Campus (CU Anschutz), the University of California San Diego and the Benaroya Research Institute followed individuals who carried anti‑citrullinated protein antibodies (ACPA). These antibodies are well‑established biomarkers for increased RA risk. Over the course of the study, the team identified widespread inflammation and immune cell abnormalities resembling those seen in people with established RA.

According to the Allen Institute and a report in ScienceDaily, the researchers observed signs of systemic inflammation throughout the body, not just in the joints, mirroring the body‑wide inflammatory state often found in active RA.

Key immune disruptions included B cells in a pro‑inflammatory state and an expansion of T helper cells, especially a subset resembling so‑called Tfh17‑like cells. These T cells help coordinate immune responses, including the production of autoantibodies that can attack healthy tissue, and their overactivity may help explain why the immune system begins targeting the body’s own joints.

The team also found evidence of cellular "reprogramming." Even naive T cells, which normally have not yet encountered pathogens or other threats, showed epigenetic changes – shifts in how genes are turned on and off without altering the underlying DNA sequence. These changes suggest the cells are being primed for an autoimmune response before any symptoms appear.

In addition, circulating monocytes – a type of white blood cell – were producing high levels of inflammatory molecules. The researchers report that these blood‑borne cells closely resembled the macrophages seen in inflamed joint tissue from RA patients, indicating that a joint‑like inflammatory program may already be present in the blood of at‑risk individuals.

"Overall, we hope this study raises awareness that rheumatoid arthritis begins much earlier than previously thought and that it enables researchers to make data‑driven decisions on strategies to disrupt disease development," said Mark Gillespie, Ph.D., an assistant investigator at the Allen Institute and a co‑senior author on the study, in a statement released by the institute.

Co‑senior author Kevin Deane, M.D./Ph.D., of CU Anschutz, added in the same release: "We expect that going forward the findings from this study will support additional studies to identify ways to better predict who will get RA, identify potential biologic targets for preventing RA as well as identify ways to improve treatments for those with existing RA."

Researchers and the Allen Institute’s summary say these insights reveal new biomarkers and immune signatures that could help identify which at‑risk individuals are most likely to develop RA. While more work is needed before routine screening or preventive therapies can be implemented, the study supports a shift toward detecting and potentially intervening in RA during its hidden early phase, with the goal of preventing joint damage and long‑term disability.

Mitä ihmiset sanovat

Limited initial reactions on X to the study on hidden immune changes preceding rheumatoid arthritis symptoms, with users sharing summaries emphasizing systemic inflammation, immune dysfunction, and potential for early detection and prevention. Sentiments are neutral and positive, lacking skepticism or criticism.

Liittyvät artikkelit

Illustration of bone marrow cross-section showing inflammation promoting mutated stem cells, with stromal cells, T cells, and expansion signals.
AI:n luoma kuva

Inflammation rewires bone marrow, giving mutated stem cells an early edge

Raportoinut AI AI:n luoma kuva Faktatarkistettu

Chronic inflammation reshapes the bone marrow niche, fostering the expansion of mutated blood stem cells seen in clonal hematopoiesis and early myelodysplasia. The work, published November 18, 2025 in Nature Communications, maps a feed‑forward loop between inflammatory stromal cells and interferon‑responsive T cells and points to therapies that target the microenvironment as well as mutant cells.

Researchers have developed a blood test that detects an elevated immune response to gut bacteria, signaling the risk of Crohn's disease years before symptoms appear. The test, focusing on antibodies to flagellin from Lachnospiraceae bacteria, was identified through a study of healthy relatives of Crohn's patients. This discovery could enable earlier interventions to prevent the condition's progression.

Raportoinut AI

A large-scale study reveals that about one in ten people carry genetic variants making them more vulnerable to severe effects from the Epstein-Barr virus, which infects over 90 percent of the population. These variants are linked to higher viral persistence and increased risks of autoimmune diseases like multiple sclerosis and lupus. The findings, based on over 735,000 genomes, suggest pathways for targeted treatments and vaccines.

Researchers at The Rockefeller University and Memorial Sloan Kettering Cancer Center have revealed a hidden spring‑like motion in the T cell receptor that helps trigger immune responses. Observed with cryo‑electron microscopy in a native‑like membrane environment, the mechanism may help explain why some T cell–based immunotherapies succeed while others fall short, and could inform efforts to make such treatments work for more patients.

Raportoinut AI Faktatarkistettu

Researchers at the University of Florida report that lifestyle factors such as optimism, good-quality sleep and strong social support are linked to brains that appear as much as eight years younger than expected for a person’s age. The effect was observed even among adults living with chronic pain, underscoring how everyday behaviors may influence brain health over time.

A large-scale study has revealed that participating in creative activities like singing and dancing can lead to beneficial changes in proteins that reduce inflammation and support brain health. Researchers analyzed blood samples from nearly 6,000 UK adults to uncover these biological pathways. The findings suggest arts involvement lowers risks for conditions such as heart disease and dementia.

Raportoinut AI Faktatarkistettu

Belgian researchers working with Danish partners report that respiratory syncytial virus (RSV) infections in early infancy are linked to a higher risk of childhood asthma, especially in children with a genetic tendency to allergies. In experimental models, protecting newborns from RSV prevented the immune changes associated with later asthma. The findings, published in Science Immunology, highlight potential long-term benefits of emerging RSV prevention tools.

 

 

 

Tämä verkkosivusto käyttää evästeitä

Käytämme evästeitä analyysiä varten parantaaksemme sivustoamme. Lue tietosuojakäytäntömme tietosuojakäytäntö lisätietoja varten.
Hylkää