Drug Development

팔로우
Realistic depiction of GluD2 glutamate receptor activating as an ion channel via D-serine and GABA, with Johns Hopkins neuroscientists in a lab setting.
AI에 의해 생성된 이미지

Johns Hopkins team finds delta-type glutamate receptors function as ligand-gated ion channels

AI에 의해 보고됨 AI에 의해 생성된 이미지 사실 확인됨

Johns Hopkins Medicine researchers report that delta-type ionotropic glutamate receptors (GluDs)—long debated as to whether they conduct ions—can act as ligand-gated ion channels. The Nature study used cryo-electron microscopy and membrane recording experiments to characterize human GluD2 and found it can be activated by the neurotransmitters D-serine and GABA, findings the authors say could help guide drug development for disorders linked to GluD mutations.

Researchers at the University of California, Los Angeles, have synthesized cage-shaped molecules featuring unusually warped double bonds, defying long-held principles of organic chemistry. This breakthrough builds on their 2024 overturning of Bredt's rule and could influence future drug design. The findings appear in Nature Chemistry.

AI에 의해 보고됨

Scientists have developed a promising compound called CMX410 that inhibits a key enzyme in the tuberculosis bacterium, showing effectiveness against drug-resistant strains. The discovery, published in Nature, emerges from collaborative research funded by the Gates Foundation. Early tests suggest it could enable shorter, safer treatments for the world's deadliest infectious disease.

이 웹사이트는 쿠키를 사용합니다

사이트를 개선하기 위해 분석을 위한 쿠키를 사용합니다. 자세한 내용은 개인정보 보호 정책을 읽으세요.
거부