Gene therapy slows Huntington’s disease progression by 75 percent

An experimental gene therapy has demonstrated significant promise in slowing the progression of Huntington’s disease, a rare form of dementia, by about 75 percent in a late-stage trial. Researchers hailed the breakthrough as a major step forward, though challenges remain in delivery and regulatory approval. Efforts are underway to develop a more practical version of the treatment.

Huntington’s disease arises from a genetic mutation that leads to the buildup of toxic huntingtin protein clumps in the brain, gradually destroying cells and impairing movement, cognition, and mood. Currently, no treatments exist to halt the disease's advancement, with care limited to symptom management.

The therapy in question, AMT-130, developed by biotechnology firm uniQure, delivers genetic instructions to brain cells to produce a molecule that inhibits the creation of these harmful proteins. In a trial conducted by Sarah Tabrizi at University College London, 17 participants received a high dose of the treatment. Three years later, their cognition, movement, and daily functioning were compared to untreated individuals from a database, revealing an average slowdown in disease progression of about 75 percent. Preliminary results were announced in September 2025.

“It is a giant step forward,” Tabrizi said, emphasizing that this marks the first achievement in treating the condition's progression. “It tells you that Huntington’s disease has the potential to be treatable. This gives us a huge window of opportunity.”

Sarah O’Shea at Mount Sinai in New York, who was not involved, described the news as vital amid recent setbacks in Huntington’s research. “We have had so many setbacks in therapies for Huntington’s disease in the last couple of years,” she noted. “So this was huge, not just because it is a breakthrough in terms of slowing disease progress, but also [because] it came at a time where we really needed this hope.”

However, the therapy requires invasive surgery lasting 12 to 18 hours to inject directly into the brain, limiting availability even in advanced medical systems like those in the US and UK. Tabrizi acknowledged potential high costs and accessibility issues if approved.

To address these hurdles, Tabrizi’s team has developed an alternative injected into the spinal fluid surrounding the cord. The phase I study began with the first patient dosed in November 2024, with safety results anticipated around July 2026.

UniQure initially planned to seek US Food and Drug Administration approval in early 2026, but a November 2025 statement indicated uncertainty following FDA concerns over the trial's control group, drawn from an external database rather than a placebo arm. The lack of an internal control complicates assessing placebo effects, though ethical issues prevent such a group due to the procedure's invasiveness.

Matt Kapusta, uniQure’s CEO, affirmed commitment: “We strongly believe that AMT-130 has the potential to bring substantial benefit to patients, and we remain fully committed to working with the FDA to determine the best path forward to rapidly bring AMT-130 to patients and their families in the US.”

相关文章

Realistic illustration depicting alpha-synuclein-ClpP interaction damaging Parkinson's-related mitochondria, blocked by CS2 compound, with Case Western researchers in a lab setting.
AI 生成的图像

Case Western researchers identify alpha-synuclein–ClpP interaction that may drive Parkinson’s-related mitochondrial damage

由 AI 报道 AI 生成的图像 事实核查

Researchers at Case Western Reserve University report they have identified an abnormal interaction between the Parkinson’s-linked protein alpha-synuclein and the enzyme ClpP that disrupts mitochondrial function in experimental models. They also describe an experimental compound, CS2, designed to block that interaction, which they say improved movement and cognitive performance and reduced brain inflammation in lab and mouse studies.

阿尔茨海默病试验正转向受癌症研究启发的多靶点方法,即便Novo Nordisk的司美格鲁肽试验失败。只有两种药物——Eli Lilly的Kisunla和Eisai与Biogen的Leqembi——被广泛批准用于减缓疾病进展。这种演变将这种脑部退化疾病视为复杂系统,在其全球影响下寻求新的遏止途径。

由 AI 报道

Scientists at Northwestern University have identified a toxic subtype of amyloid beta oligomers that triggers early Alzheimer's changes in the brain. Their experimental drug, NU-9, reduced this damage and inflammation in pre-symptomatic mice, suggesting potential for preventing the disease before symptoms appear. The findings highlight a new strategy for early intervention.

Researchers in Sweden and Norway have identified biological markers in the blood that signal the earliest stages of Parkinson's disease, potentially allowing detection up to 20 years before motor symptoms appear. The study, published in npj Parkinson's Disease, highlights a brief window where these markers are detectable, offering hope for earlier diagnosis and treatment. Blood tests based on this discovery could enter healthcare testing within five years.

由 AI 报道

Brazil's National Health Surveillance Agency (Anvisa) approved the drug lecanemabe, marketed as Leqembi, on Thursday, January 8, for patients with early-stage Alzheimer's. The monoclonal antibody, administered via infusion, slows disease progression in individuals with mild cognitive impairment and confirmed beta-amyloid protein in the brain. The approval marks progress, though it is not a cure.

Researchers at Washington University School of Medicine in St. Louis, working with scientists at Northwestern University, have developed a noninvasive nasal nanotherapy that activates the immune system to attack aggressive brain tumors in mice. By delivering spherical nucleic acids that trigger the STING immune pathway directly from the nose to the brain, the approach eliminated glioblastoma tumors in mouse models when combined with drugs that boost T-cell activity, according to a study in the Proceedings of the National Academy of Sciences.

由 AI 报道

一位中国神经学家在为母亲治疗其他疾病时,使用高强度聚焦超声(FUS)意外改善了她的阿尔茨海默病症状,使其认知功能显著恢复。孙博民医生表示,这是世界上首例有效的阿尔茨海默病FUS治疗。患者已九十多岁,患病约八年,此次治疗于2024年进行。

 

 

 

此网站使用 cookie

我们使用 cookie 进行分析以改进我们的网站。阅读我们的 隐私政策 以获取更多信息。
拒绝