Athlete using sweat-sensing AI wearable for real-time, needle-free health monitoring of biomarkers like glucose and stress hormones in a lab setting.
Imagen generada por IA

Study examines sweat-sensing AI wearables for early, needle-free health monitoring

Imagen generada por IA
Verificado por hechos

Researchers at the University of Technology Sydney are exploring how sweat-sensing wearables, combined with artificial intelligence, could enable real-time, non-invasive tracking of health biomarkers. Their work suggests that sweat-based monitoring might one day help flag risks for conditions such as diabetes and other chronic diseases before symptoms appear, offering a painless complement to some blood tests for tracking hormones, medications, and stress-related biomarkers.

A recent article from the University of Technology Sydney (UTS), published via ScienceDaily, describes emerging research on sweat as a diagnostic biofluid and how advanced sensors and artificial intelligence (AI) could support continuous, personalized health monitoring.

According to the UTS team, sweat carries a rich mix of biomarkers, including metabolites such as glucose and stress-related hormones like cortisol, which can reflect physiological states without the need for needles or traditional blood draws.

The work is presented as part of a growing body of research rather than a single clinical product. It highlights how flexible, skin-mounted patches can collect sweat and, when paired with AI, may eventually identify metabolites and interpret complex chemical patterns to provide earlier warnings of potential health issues.

Co-author Dr. Janice McCauley, from the UTS Faculty of Science, is quoted as describing sweat as "an under-used diagnostic fluid" and saying that the ability to measure multiple biomarkers at once and transmit data wirelessly offers substantial potential for preventive health care.

The UTS researchers report that recent progress in microfluidics, stretchable electronics and wireless communication has enabled a new generation of lightweight, flexible patches that rest on the skin and continuously collect sweat. When integrated with AI-based pattern recognition, these devices could give users personalized feedback on their physiology and possible early indications of medical conditions.

Potential applications cited in the UTS release include sports and chronic disease management. Athletes could use sweat sensors to monitor electrolyte loss during training and to support verification of drug-free status before competitions. People managing diabetes may, in the future, be able to rely on sweat-based glucose measurements rather than conventional blood tests, though this remains an area of active development rather than standard clinical practice.

The UTS team notes that advances in AI in 2023 significantly improved pattern analysis and classification algorithms, strengthening the ability to link subtle biochemical signals in sweat with particular physiological conditions. The researchers say the next major milestone is to integrate these analytical capabilities into compact, low-power devices capable of transmitting data securely.

UTS scientists are currently studying the basic physiological characteristics of sweat and designing microfluidic tools that can detect very low concentrations of biomarkers, including glucose and cortisol. Much of this work remains at the prototype stage, but interest from industry partners is described as increasing.

In the UTS report, one of the co-authors suggests that wearables capable of notifying users when they have elevated stress hormone levels and, over time, indicating potential risk of chronic health conditions may not be far off. However, the researchers also emphasize that sweat-based diagnostics are still emerging, and further validation will be needed before such systems can routinely replace established blood tests or be used to diagnose complex diseases such as cancer, Parkinson's disease, or Alzheimer's disease.

Existing examples of sweat-sensing technology, such as commercial sports patches that measure sweat rate and electrolyte loss and transmit data to smartphone apps, are cited as early indicators of what more advanced, AI-enabled health wearables may eventually achieve.

Qué dice la gente

Limited discussions on X about the UTS sweat-sensing AI wearables study, with positive shares highlighting its potential for early, non-invasive detection of health biomarkers like diabetes risks, though mostly neutral reposts from scientists and users without deep analysis or diverse sentiments.

Artículos relacionados

Conceptual close-up of Apple's rumored 2027 AI wearable pin on a suit lapel, showcasing cameras, mics, and speaker in a realistic product render.
Imagen generada por IA

Apple desarrolla pin wearable con IA para 2027

Reportado por IA Imagen generada por IA

Apple está desarrollando supuestamente un pequeño dispositivo wearable habilitado con IA que se asemeja a un pin, similar en tamaño a un AirTag pero ligeramente más grueso. El dispositivo cuenta con cámaras, micrófonos y un altavoz para interactuar con modelos de IA. Podría lanzarse tan pronto como en 2027 en medio de la competencia de OpenAI y Meta.

Una nueva ola de tecnología wearable está desplazando el enfoque de los relojes inteligentes hacia dispositivos de monitorización cerebral. Estos wearables neurotech prometen ir más allá del seguimiento de fitness hacia aplicaciones de neurociencia. La evolución destaca una década de innovación rápida en gadgets personales.

Reportado por IA

Los rastreadores de fitness Oura y Whoop están introduciendo opciones de pruebas de sangre de acceso directo para simplificar los chequeos de bienestar. Estos servicios buscan hacer los paneles de salud más convenientes, aunque los expertos advierten que no pueden reemplazar el consejo médico profesional. El movimiento evoca innovaciones pasadas como Theranos, destacando los esfuerzos continuos por aliviar los inconvenientes de la extracción de sangre.

Una serie de estudios recientes en revistas de la American Chemical Society describe organoides cerebrales de dos años con actividad medible, un guante electrohilador portátil para parches de heridas en el sitio, un recubrimiento comestible del “lobo manzano” brasileño que mantuvo zanahorias baby frescas hasta por 15 días a temperatura ambiente, y microplásticos detectados en retinas humanas post mortem.

Reportado por IA

Una reseña de CNET destaca el Anillo Oura como el mejor anillo inteligente para monitorear fitness, sueño y estrés en 2026, superando a competidores tras meses de pruebas. El Anillo Ultrahuman Ring Air, antes favorito para entrenamientos, se enfrenta a una prohibición en EE.UU. por una demanda de Oura. El Anillo Evie se centra en la salud menstrual pero queda corto en insights accionables.

Científicos han desarrollado una prueba integrada en compresas menstruales que mide los niveles de hormona antimülleriana en sangre menstrual para evaluar la reserva ovárica. Esta herramienta no invasiva podría permitir a las mujeres monitorear cambios en su fertilidad en casa sin visitas a clínicas. La innovación promete un seguimiento más fácil del suministro de óvulos con el tiempo.

Reportado por IA

Científicos de la Universidad Brown han identificado un patrón sutil de actividad cerebral que puede predecir la enfermedad de Alzheimer en personas con deterioro cognitivo leve hasta dos años y medio antes. Usando magnetoencefalografía y una herramienta de análisis personalizada, los investigadores detectaron cambios en las señales eléctricas neuronales vinculadas al procesamiento de la memoria. Este enfoque no invasivo ofrece un posible nuevo biomarcador para la detección temprana.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar