プリンストン大学の神経科学者らが、脳がタスク間でモジュール式の認知的コンポーネントを再利用することで柔軟な学習を実現することを報告。リhesusザルの実験で、研究者らは前頭前野がこれらの再利用可能な「認知的レゴ」を組み立てて行動を迅速に適応させることを発見。11月26日にNature誌に掲載された知見は、現在のAIシステムとの違いを強調し、柔軟な思考を損なう障害の治療に最終的に寄与する可能性がある。
プリンストン大学の研究者らは、なぜ生物学的脳が多くの人工知能システムよりも新しいタスクに効果的に適応するのかを調査した。新たな研究で、脳が複雑な行動を構築するために共有された神経パターンを繰り返し再利用し、または認知的「ブロック」を使用し、各タスクをゼロから学習するのではなくすることを報告。
プリンストンのこの仕事に関する記述によると、2025年11月26日にNature誌に掲載され、チームは2匹の雄リhesusザルを3つの関連する視覚カテゴリ化タスクを実行するよう訓練し、脳活動を記録した。
タスクでは、ザルは画面上の色とりどりの風船のような塊を見て、各形状がウサギか文字「T」に似ているか(形状カテゴリ化)、または赤みが強いか緑みが強いか(色カテゴリ化)を判断した。選択を示すために、動物は画面の4方向のいずれかを見て決定を報告した。例えば、あるタスクでは左を見るのが塊がウサギに似ていることを示し、右を見るのが「T」に似ていることを示した。一部の画像は明確に一つのカテゴリか他かだったが、他のものは曖昧でより細かい判断を必要とした。
デザインの重要な特徴は、各タスクに独自のルールがあるものの他のものと要素を共有していたことである。色のタスクの一つと形状タスクは眼球運動と選択の間の同じマッピングを必要とし、両方の色タスクは色判断の同じルール(赤みが強い対緑みが強い)を使用したが眼球運動応答が異なった。この構造により、研究者らはタスクが特定のコンポーネントを共有するたびに脳が同じ神経パターン——その認知的構成要素——を再利用するかをテストできた。
脳活動の分析は、前頭前野(脳の前方に位置し、高次認知と意思決定に関与する領域)で繰り返しの出現パターンを示した。これらのパターンは、色を識別するなどの共有目標に向かって神経細胞群が協力する際に現れ、他のパターンと柔軟に組み合わせられて異なるタスクをサポートした。
「最先端のAIモデルは個別タスクで人間レベル、さらには超人的な性能に達する。しかし多くの異なるタスクを学習・実行するのは苦手だ」と、研究の主任著者でプリンストン神経科学研究所副主任のティム・ブッシュマン博士。「脳が柔軟なのは、認知のコンポーネントを多くの異なるタスクで再利用できるからだ。これらの『認知的レゴ』をはめ合わせることで、脳は新しいタスクを構築できる。」
ブッシュマンは認知的ブロックをコンピュータプログラムの関数に例えた:ある神経細胞群が画像の色を決定し、その出力が特定の眼球運動などの行動を導く別のブロックに供給される。例えば色のタスクの一つでは、脳は色を評価するブロックと視線方向を制御するブロックを組み立てた。動物が類似の眼球運動を使いながら形状判断に切り替わると、脳は形状処理ブロックを同じ運動ブロックと組み合わせた。
主任著者のシナ・タファゾリ博士(ブッシュマン研究室の博士研究員)は、前頭前野が無関係なブロックを抑制し、動物が現在の目標に集中するのを助けると述べた。「脳の認知的制御容量は限られている」とタファゾリ。「現在重要なものに集中するため、一部の能力を圧縮する必要がある。例えば形状カテゴリ化に集中すると、目標が形状識別であるため色符号化能力が一時的に低下する。」
研究者らは、この構成組織化——再利用可能な神経コンポーネントから新しい行動を組み立てること——を、人間や他の動物が新しいタスクを迅速に学習できる主な理由と解釈している。一方、多くの機械学習システムは「壊滅的干渉」に苦しみ、新しいスキルの習得が古いものを上書きする。「機械や神経回路網が新しいことを学習すると、以前の記憶を忘れ上書きする」とタファゾリ。
プリンストンの報告と関連報道によると、脳がこれらの認知的ブロックを再利用・再結合する方法を理解することは、以前の知識を消去せずに新しいタスクを学習するAIシステムの設計に役立つ可能性がある。同様の原則は将来的に統合失調症、強迫性障害、一部の脳損傷などの状態に対する臨床アプローチを導くかもしれない。これらの状態では、人々はしばしば戦略を切り替えたり既存のスキルを新しい文脈で適用したりするのが難しい。
研究資金は米国国立衛生研究所から提供され、助成金R01MH129492および5T32MH065214を含む。