Illustration of Northwestern University's wireless micro-LED brain implant delivering light patterns to mouse neurons for sensory signaling.
AIによって生成された画像

Northwestern team develops wireless implant that ‘speaks’ to the brain with light

AIによって生成された画像
事実確認済み

Scientists at Northwestern University have created a soft, wireless brain implant that delivers patterned light directly to neurons, enabling mice to interpret these signals as meaningful cues without relying on sight, sound or touch. The fully implantable device uses an array of up to 64 micro-LEDs to generate complex activity patterns across the cortex, a development that could advance next-generation prosthetics and sensory therapies, according to Northwestern and Nature Neuroscience.

In a major step forward for neurobiology and bioelectronics, researchers led by neurobiologist Yevgenia Kozorovitskiy and bioelectronics pioneer John A. Rogers at Northwestern University have built a fully implantable device that sends information to the brain using light-based signals.

The soft, flexible implant sits under the scalp but on top of the skull, where it delivers precise patterns of light through the bone to activate neurons across the cortex. According to Northwestern, the system uses a programmable array of up to 64 micro-LEDs — each about as small as a human hair — integrated with a wirelessly powered control module to transmit information in real time while remaining completely beneath the skin.

The work, published on December 8, 2025, in the journal Nature Neuroscience under the title "Patterned wireless transcranial optogenetics generates artificial perception," builds on the team’s earlier wireless optogenetics platform, reported in Nature Neuroscience in 2021. That earlier system used a single micro-LED probe to control neurons and influence social behavior in mice, eliminating the need for fiberoptic cables that restricted movement.

In the new study, the device’s array of micro-LEDs is used to generate rich, distributed patterns of activity that more closely resemble the brain’s natural responses during sensory experiences. With real-time control over each LED, researchers can program complex sequences that span multiple cortical regions, mimicking the broad networks activated by real sensations.

“Our brains are constantly turning electrical activity into experiences, and this technology gives us a way to tap into that process directly,” Kozorovitskiy said in a Northwestern news release. “This platform lets us create entirely new signals and see how the brain learns to use them. It brings us just a little bit closer to restoring lost senses after injuries or disease while offering a window into the basic principles that allow us to perceive the world.” 

John A. Rogers, who led the technology development, emphasized the goal of a minimally invasive, fully implantable design. “By integrating a soft, conformable array of micro-LEDs — each as small as a single strand of human hair — with a wirelessly powered control module, we created a system that can be programmed in real time while remaining completely beneath the skin, without any measurable effect on natural behaviors of the animals,” he said. “It represents a significant step forward in building devices that can interface with the brain without the need for burdensome wires or bulky external hardware.”

First author Mingzheng Wu noted that the new platform dramatically expands the complexity of patterns that can be delivered to the brain compared with the earlier single-LED device. “In the first paper, we used a single micro-LED,” Wu said. “Now we’re using an array of 64 micro-LEDs to control the pattern of cortical activity. The number of patterns we can generate with various combinations of LEDs — frequency, intensity and temporal sequence — is nearly infinite.”

Physically, the device is roughly the size of a postage stamp and thinner than a credit card, according to Northwestern. Instead of extending probes into brain tissue through a cranial opening, the soft array conforms to the surface of the skull and shines light through the bone. The team uses red light, which penetrates tissue effectively and can reach neurons through the skull.

To test the system, the researchers worked with mice engineered to have light-responsive cortical neurons. Using the implant, they delivered patterned bursts of light across four cortical regions, effectively tapping a code directly into neural circuits. The mice were trained to associate a particular light pattern with a reward that required them to visit a specific port in a behavioral chamber.

Over a series of trials, the animals quickly learned to recognize the target pattern among many alternatives. Even without any visual, auditory or tactile cues, the mice used the artificial signals to choose the correct port and obtain a reward, demonstrating that the brain could interpret the patterned stimulation as meaningful information and use it to guide decisions.

“By consistently selecting the correct port, the animal showed that it received the message,” Wu said. “They can’t use language to tell us what they sense, so they communicate through their behavior.”

Northwestern scientists say the platform could eventually support a range of therapeutic applications, including providing sensory feedback for prosthetic limbs, delivering artificial stimuli for future vision or hearing prostheses, modulating pain perception without opioids or other systemic drugs, aiding rehabilitation after stroke or injury, and enabling control of robotic limbs via brain activity. Those potential uses remain long-term goals; the current study demonstrates the feasibility of encoding artificial perceptions in the brain using patterned light.

The research was supported by the Querrey Simpson Institute for Bioelectronics, the NINDS/BRAIN Initiative, the National Institute of Mental Health and several private foundations, including One Mind, the Kavli Foundation, the Shaw Family, the Simons Foundation, the Alfred P. Sloan Foundation and the Christina Enroth-Cugell and David Cugell Fellowship, according to Northwestern.

人々が言っていること

Discussions on X about Northwestern University's wireless micro-LED brain implant are limited but positive, focusing on its potential for neuroprosthetics and sensory therapies. Researchers and official accounts praise the brain's adaptability to light signals bypassing traditional senses. Shares from science enthusiasts emphasize the breakthrough's implications for vision restoration and AI integration, with no negative or skeptical sentiments identified.

関連記事

Illustration of a brain connectivity map from an Ohio State University study, showing neural patterns predicting cognitive activities, for a news article on neuroscience findings.
AIによって生成された画像

研究が脳の接続性をマッピングし、認知機能全体での活動を予測する方法を明らかに

AIによるレポート AIによって生成された画像 事実確認済み

オハイオ州立大学の科学者たちは、脳の配線パターンが脳全体にわたる多くの精神的機能に関連する活動を予測する方法を明らかにしました。各領域は、言語や記憶などの役割に関連する独自の「接続性フィンガープリント」を示します。Network Neuroscienceに掲載された査読済みの発見は、健康な若年成人脳の研究と、神経学的または精神疾患との比較のための基盤を提供します。

研究者らが紙のように薄い脳インプラント「BISC」を開発し、脳とコンピューター間の高帯域無線リンクを実現。このシングルチップデバイスは、脳と頭蓋骨の狭い隙間に滑り込ませることができ、てんかん、麻痺、失明などの治療に新たな可能性を開き、運動、知覚、意図を解読する先進AIモデルをサポートする。

AIによるレポート

研究者らが、ニューロンが内部から発光する新しい生物発光イメージングツールを開発し、外部レーザーなしで脳活動をリアルタイムで観察可能にした。この革新であるCaBLAMは、従来の蛍光法の限界を克服し、生きた動物でより鮮明で長時間の記録を提供する。このツールは、神経機能の深い洞察と脳を超えた潜在的な応用を約束する。

神経科学者らが視覚野に体に似た8つの地図を見つけ、これらは触覚感覚の組織を反映し、他者の視界にあるものを脳が物理的に感じることを可能にしている。この発見は映画視聴中の脳スキャンに基づき、共感の理解を深め、自閉症治療とAI進化の可能性を示す。Nature誌に掲載された。

AIによるレポート

研究者らは発達中の大脳皮質を模倣した詳細な脳オルガノイドを作成し、本物の脳の血管に非常に似た血管を備えました。この進歩は、実験室で培養されたミニ脳の主要な制限を解消し、より長く生存し、神経学的疾患に関するより深い洞察を提供する可能性があります。ヒト幹細胞から培養されたオルガノイドは、中空の中心を持つ均等に分布した血管を特徴とし、脳研究における重要な一歩です。

スクリプス研究所のノーベル賞受賞者アルデム・パタプーチャン氏が率いるチームは、アレン研究所の協力者らと協力し、5年間で1420万ドルのNIHディレクター変革的研究賞を獲得し、彼らが説明するような初のインターロセプション・アトラスを構築する。これは、呼吸、血圧、消化のバランスを保つのを助ける内部感覚システムである。([eurekalert.org](https://www.eurekalert.org/news-releases/1101449?utm_source=openai))

AIによるレポート

ウェアラブル技術の新たな波が、スマートウォッチから脳監視デバイスへと焦点を移しています。これらのニューロテック・ウェアラブルは、フィットネストラッキングを超えて神経科学アプリケーションに踏み込むことを約束します。この進化は、個人ガジェット分野での急速なイノベーションの10年を強調しています。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否