Illustration of Northwestern University's wireless micro-LED brain implant delivering light patterns to mouse neurons for sensory signaling.
Bild genererad av AI

Northwestern team develops wireless implant that ‘speaks’ to the brain with light

Bild genererad av AI
Faktagranskad

Scientists at Northwestern University have created a soft, wireless brain implant that delivers patterned light directly to neurons, enabling mice to interpret these signals as meaningful cues without relying on sight, sound or touch. The fully implantable device uses an array of up to 64 micro-LEDs to generate complex activity patterns across the cortex, a development that could advance next-generation prosthetics and sensory therapies, according to Northwestern and Nature Neuroscience.

In a major step forward for neurobiology and bioelectronics, researchers led by neurobiologist Yevgenia Kozorovitskiy and bioelectronics pioneer John A. Rogers at Northwestern University have built a fully implantable device that sends information to the brain using light-based signals.

The soft, flexible implant sits under the scalp but on top of the skull, where it delivers precise patterns of light through the bone to activate neurons across the cortex. According to Northwestern, the system uses a programmable array of up to 64 micro-LEDs — each about as small as a human hair — integrated with a wirelessly powered control module to transmit information in real time while remaining completely beneath the skin.

The work, published on December 8, 2025, in the journal Nature Neuroscience under the title "Patterned wireless transcranial optogenetics generates artificial perception," builds on the team’s earlier wireless optogenetics platform, reported in Nature Neuroscience in 2021. That earlier system used a single micro-LED probe to control neurons and influence social behavior in mice, eliminating the need for fiberoptic cables that restricted movement.

In the new study, the device’s array of micro-LEDs is used to generate rich, distributed patterns of activity that more closely resemble the brain’s natural responses during sensory experiences. With real-time control over each LED, researchers can program complex sequences that span multiple cortical regions, mimicking the broad networks activated by real sensations.

“Our brains are constantly turning electrical activity into experiences, and this technology gives us a way to tap into that process directly,” Kozorovitskiy said in a Northwestern news release. “This platform lets us create entirely new signals and see how the brain learns to use them. It brings us just a little bit closer to restoring lost senses after injuries or disease while offering a window into the basic principles that allow us to perceive the world.” 

John A. Rogers, who led the technology development, emphasized the goal of a minimally invasive, fully implantable design. “By integrating a soft, conformable array of micro-LEDs — each as small as a single strand of human hair — with a wirelessly powered control module, we created a system that can be programmed in real time while remaining completely beneath the skin, without any measurable effect on natural behaviors of the animals,” he said. “It represents a significant step forward in building devices that can interface with the brain without the need for burdensome wires or bulky external hardware.”

First author Mingzheng Wu noted that the new platform dramatically expands the complexity of patterns that can be delivered to the brain compared with the earlier single-LED device. “In the first paper, we used a single micro-LED,” Wu said. “Now we’re using an array of 64 micro-LEDs to control the pattern of cortical activity. The number of patterns we can generate with various combinations of LEDs — frequency, intensity and temporal sequence — is nearly infinite.”

Physically, the device is roughly the size of a postage stamp and thinner than a credit card, according to Northwestern. Instead of extending probes into brain tissue through a cranial opening, the soft array conforms to the surface of the skull and shines light through the bone. The team uses red light, which penetrates tissue effectively and can reach neurons through the skull.

To test the system, the researchers worked with mice engineered to have light-responsive cortical neurons. Using the implant, they delivered patterned bursts of light across four cortical regions, effectively tapping a code directly into neural circuits. The mice were trained to associate a particular light pattern with a reward that required them to visit a specific port in a behavioral chamber.

Over a series of trials, the animals quickly learned to recognize the target pattern among many alternatives. Even without any visual, auditory or tactile cues, the mice used the artificial signals to choose the correct port and obtain a reward, demonstrating that the brain could interpret the patterned stimulation as meaningful information and use it to guide decisions.

“By consistently selecting the correct port, the animal showed that it received the message,” Wu said. “They can’t use language to tell us what they sense, so they communicate through their behavior.”

Northwestern scientists say the platform could eventually support a range of therapeutic applications, including providing sensory feedback for prosthetic limbs, delivering artificial stimuli for future vision or hearing prostheses, modulating pain perception without opioids or other systemic drugs, aiding rehabilitation after stroke or injury, and enabling control of robotic limbs via brain activity. Those potential uses remain long-term goals; the current study demonstrates the feasibility of encoding artificial perceptions in the brain using patterned light.

The research was supported by the Querrey Simpson Institute for Bioelectronics, the NINDS/BRAIN Initiative, the National Institute of Mental Health and several private foundations, including One Mind, the Kavli Foundation, the Shaw Family, the Simons Foundation, the Alfred P. Sloan Foundation and the Christina Enroth-Cugell and David Cugell Fellowship, according to Northwestern.

Vad folk säger

Discussions on X about Northwestern University's wireless micro-LED brain implant are limited but positive, focusing on its potential for neuroprosthetics and sensory therapies. Researchers and official accounts praise the brain's adaptability to light signals bypassing traditional senses. Shares from science enthusiasts emphasize the breakthrough's implications for vision restoration and AI integration, with no negative or skeptical sentiments identified.

Relaterade artiklar

MIT researcher using focused ultrasound on volunteer's head to test consciousness theories, with holographic brain visualization.
Bild genererad av AI

MIT-artikel beskriver hur fokuserad ultraljud kunde testa teorier om medvetande

Rapporterad av AI Bild genererad av AI Faktagranskad

Forskare knutna till MIT hävdar att transkraniell fokuserad ultraljud — en icke-invasiv teknik som kan modulera aktivitet i djupa hjärnregioner — skulle kunna möjliggöra mer direkta orsak-verkan-tester av hur medvetna upplevelser uppstår. I en ”vägvisare”-översikt i *Neuroscience & Biobehavioral Reviews* beskriver de experimentella tillvägagångssätt avsedda att skilja mellan konkurrerande förklaringar till var och hur medvetenhet genereras i hjärnan.

Forskare har utvecklat en pappers tunt hjärnimplantat kallat BISC som skapar en högbandsbredds trådlös länk mellan hjärnan och datorer. Enkelchip-enheten, som kan glida in i det smala utrymmet mellan hjärnan och skallen, kan öppna nya möjligheter för behandling av tillstånd som epilepsi, förlamning och blindhet genom att stödja avancerade AI-modeller som dekodar rörelse, perception och avsikt.

Rapporterad av AI

Forskare har utvecklat ett nytt bioluminiscentt bildverktyg som låter neuroner glöda inifrån, vilket möjliggör realtidsobservation av hjärnaktivitet utan externa lasrar. Denna innovation, kallad CaBLAM, övervinner begränsningar hos traditionella fluorescensmetoder genom att ge klarare och längrevariga inspelningar i levande djur. Verktyget lovar djupare insikter i neural funktion och potentiella tillämpningar bortom hjärnan.

Neurovetenskapsforskare vid Princeton University rapporterar att hjärnan uppnår flexibelt lärande genom att återanvända modulära kognitiva komponenter över uppgifter. I experiment med rhesusapor fann forskarna att prefrontala cortex monterar dessa återanvändbara ”kognitiva Legos” för att snabbt anpassa beteenden. Resultaten, publicerade 26 november i Nature, understryker skillnader från dagens AI-system och kan så småningom informera behandlingar för störningar som försämrar flexibelt tänkande.

Rapporterad av AI

Neurovetenskapsmän har identifierat åtta kroppsliknande kartor i den visuella cortexen som speglar organisationen av känselintryck, vilket gör att hjärnan fysiskt kan känna vad den ser hos andra. Denna upptäckt, baserad på hjärnskanningar under filmvisning, förbättrar förståelsen av empati och lovar behandlingar för autism och framsteg inom AI. Resultaten publicerades i Nature.

Forskare vid Johns Hopkins University har upptäckt att överlevande neuroner i det visuella systemet kan skjuta ut nya grenar för att återskapa kopplingar till hjärnan efter traumatisk skada, och återställa funktionen utan att regenerera förlorade celler. Processen, observerad hos möss, visade sig effektiv men långsammare hos honor, vilket belyser könsbaserade skillnader i återhämtning. Detta fynd utmanar länge hållna föreställningar om neural regeneration och ger insikter för behandling av hjärnskador hos människor.

Rapporterad av AI Faktagranskad

Ett team ledd av Nobelpristagaren Ardem Patapoutian vid Scripps Research, i samarbete med medarbetare vid Allen Institute, har säkrat ett femårigt NIH Director’s Transformative Research Award på 14,2 miljoner dollar för att bygga det de beskriver som den första atlasen över interoception—det interna sensorsystemet som hjälper till att hålla andning, blodtryck och matsmältning i balans. ([eurekalert.org](https://www.eurekalert.org/news-releases/1101449?utm_source=openai))

 

 

 

Denna webbplats använder cookies

Vi använder cookies för analys för att förbättra vår webbplats. Läs vår integritetspolicy för mer information.
Avböj