Ramanujan's century-old pi formulas connect to modern physics

Researchers at the Indian Institute of Science in Bengaluru have linked Srinivasa Ramanujan's over-a-century-old formulas for pi to contemporary physics, including turbulent fluids and the universe's expansion. Their work, published in Physical Review Letters, reveals unexpected bridges between Ramanujan's intuitive mathematics and conformal field theories. This discovery highlights how pure math can mirror real-world physical phenomena.

Earlier this month, Aninda Sinha, a professor at the Indian Institute of Science in Bengaluru, and his former doctoral student Faizan Bhat published a paper in Physical Review Letters that connects Srinivasa Ramanujan's esoteric mathematics to the physics of turbulent fluids and the expansion of the universe. The key link is π, the irrational number approximately 3.14159265, central to geometry and computations.

Over a century ago, Ramanujan, then an accountant in Chennai, discovered at least 17 distinct infinite series for 1/π. These formulas converge rapidly, with each additional term dramatically improving accuracy. Some underpin the Chudnovsky algorithm, enabling computations of π to over 200 trillion digits on supercomputers.

Sinha explained, “We were interested in the maths behind Ramanujan’s thinking.” Their investigation began in string theory, a framework positing that fundamental particles arise from vibrations of tiny energy strings. While reviewing string-theoretic calculations, they identified incomplete literature results and derived an infinite number of new π formulas.

Sinha noted that strings, like rubber bands, can be stretched in various ways, embedding π in multiple representations. This led them to recognize parallels between Ramanujan's modular equations, elliptic integrals, and special functions and structures in conformal field theories (CFTs). CFTs describe critical phenomena, such as the point where water at 374°C and 221 atm becomes a superfluid, indistinguishable as liquid or gas.

“At the critical point, you cannot actually say which is liquid and which is vapour,” Sinha said. The Ramanujan equations match correlation functions in logarithmic CFTs, forming a bridge between number theory and physics.

Bhat stated in a press release, “[In] any piece of beautiful mathematics, you almost always find that there is a physical system which actually mirrors the mathematics. Ramanujan’s motivation might have been very mathematical, but without his knowledge, he was also studying black holes, turbulence, percolation, all sorts of things.”

Historical precedents abound: 19th-century Riemannian geometry later underpinned Einstein's general relativity, used in GPS today. Fourier transforms, developed for heat flow analysis, now enable digital compression.

Currently, this connection inspires new inquiries in Sinha's group, appearing in expanding universe models. It also suggests efficient representations for other transcendental numbers rooted in physics, though it does not yet resolve major conjectures in number theory or cosmology.

Artigos relacionados

MIT researchers analyze rotating brain wave patterns on a screen in a lab, with an animal model, illustrating how the brain refocuses after distraction.
Imagem gerada por IA

Cientistas do MIT descobrem que ondas cerebrais rotativas ajudam a mente a refocar após distração

Reportado por IA Imagem gerada por IA Verificado

Pesquisadores do Instituto Picower do MIT relatam que ondas rotativas de atividade neural ajudam o cérebro a recuperar o foco após distração. Em estudos com animais, a extensão dessas rotações rastreou o desempenho: rotações completas alinharam-se com respostas corretas, enquanto ciclos incompletos foram ligados a erros. O tempo entre uma distração e a resposta também importou, sugerindo um ciclo de recuperação dependente do tempo.

Em 2025, uma equipe liderada por Zaher Hani na Universidade de Michigan resolveu um dos problemas antigos de David Hilbert, ligando de forma fluida as descrições matemáticas de fluidos em diferentes escalas. Este avanço conecta o comportamento microscópico de partículas a fluxos macroscópicos como água em uma pia. A conquista utiliza técnicas da teoria quântica de campos e promete insights sobre dinâmicas atmosférica e oceânica.

Reportado por IA

No meio do século XIX, o matemático Bernhard Riemann desenvolveu uma ideia revolucionária para compreender espaços matemáticos. Este conceito, conhecido como variedade, lançou as bases para avanços na geometria e física modernas. A história origina-se da Quanta Magazine e foi destacada na Wired.

Pesquisadores da Universidade Duke desenvolveram uma estrutura de inteligência artificial que revela regras diretas subjacentes a sistemas altamente complexos na natureza e na tecnologia. Publicado em 17 de dezembro na npj Complexity, a ferramenta analisa dados de séries temporais para produzir equações compactas que capturam comportamentos essenciais. Essa abordagem pode preencher lacunas no entendimento científico onde métodos tradicionais falham.

Reportado por IA

Pesquisadores da Universidade RPTU de Kaiserslautern-Landau simularam uma junção de Josephson usando átomos ultrafrios, revelando efeitos quânticos chave anteriormente ocultos em supercondutores. Ao separar condensados de Bose-Einstein com uma barreira de laser móvel, observaram degraus de Shapiro, confirmando a universalidade do fenômeno. Os achados, publicados na Science, ligam sistemas quânticos atômicos e eletrônicos.

Uma equipa internacional liderada pela Universidade de Oxford descobriu uma das maiores estruturas rotativas do universo, uma fina cadeia de galáxias que rodam em sincronia dentro de um maior filamento cósmico. Localizada a cerca de 140 milhões de anos-luz da Terra, esta estrutura desafia os modelos de formação de galáxias. Os achados, publicados em Monthly Notices of the Royal Astronomical Society, sugerem que estruturas cósmicas em grande escala influenciam o giro das galáxias.

Reportado por IA

Pesquisadores da TU Wien desenvolveram um sistema quântico usando átomos de rubídio ultrafrios que permite que energia e massa fluam com eficiência perfeita, desafiando a resistência usual. Confinados a uma única linha, os átomos colidem incessantemente sem desacelerar, imitando um berço de Newton. A descoberta, publicada na Science, destaca uma nova forma de transporte em gases quânticos.

 

 

 

Este site usa cookies

Usamos cookies para análise para melhorar nosso site. Leia nossa política de privacidade para mais informações.
Recusar