Ramanujan's century-old pi formulas connect to modern physics

Researchers at the Indian Institute of Science in Bengaluru have linked Srinivasa Ramanujan's over-a-century-old formulas for pi to contemporary physics, including turbulent fluids and the universe's expansion. Their work, published in Physical Review Letters, reveals unexpected bridges between Ramanujan's intuitive mathematics and conformal field theories. This discovery highlights how pure math can mirror real-world physical phenomena.

Earlier this month, Aninda Sinha, a professor at the Indian Institute of Science in Bengaluru, and his former doctoral student Faizan Bhat published a paper in Physical Review Letters that connects Srinivasa Ramanujan's esoteric mathematics to the physics of turbulent fluids and the expansion of the universe. The key link is π, the irrational number approximately 3.14159265, central to geometry and computations.

Over a century ago, Ramanujan, then an accountant in Chennai, discovered at least 17 distinct infinite series for 1/π. These formulas converge rapidly, with each additional term dramatically improving accuracy. Some underpin the Chudnovsky algorithm, enabling computations of π to over 200 trillion digits on supercomputers.

Sinha explained, “We were interested in the maths behind Ramanujan’s thinking.” Their investigation began in string theory, a framework positing that fundamental particles arise from vibrations of tiny energy strings. While reviewing string-theoretic calculations, they identified incomplete literature results and derived an infinite number of new π formulas.

Sinha noted that strings, like rubber bands, can be stretched in various ways, embedding π in multiple representations. This led them to recognize parallels between Ramanujan's modular equations, elliptic integrals, and special functions and structures in conformal field theories (CFTs). CFTs describe critical phenomena, such as the point where water at 374°C and 221 atm becomes a superfluid, indistinguishable as liquid or gas.

“At the critical point, you cannot actually say which is liquid and which is vapour,” Sinha said. The Ramanujan equations match correlation functions in logarithmic CFTs, forming a bridge between number theory and physics.

Bhat stated in a press release, “[In] any piece of beautiful mathematics, you almost always find that there is a physical system which actually mirrors the mathematics. Ramanujan’s motivation might have been very mathematical, but without his knowledge, he was also studying black holes, turbulence, percolation, all sorts of things.”

Historical precedents abound: 19th-century Riemannian geometry later underpinned Einstein's general relativity, used in GPS today. Fourier transforms, developed for heat flow analysis, now enable digital compression.

Currently, this connection inspires new inquiries in Sinha's group, appearing in expanding universe models. It also suggests efficient representations for other transcendental numbers rooted in physics, though it does not yet resolve major conjectures in number theory or cosmology.

Relaterade artiklar

MIT researchers analyze rotating brain wave patterns on a screen in a lab, with an animal model, illustrating how the brain refocuses after distraction.
Bild genererad av AI

MIT-forskare upptäcker att roterande hjärnvågor hjälper hjärnan att återfokusera efter distraktion

Rapporterad av AI Bild genererad av AI Faktagranskad

Forskare vid MIT:s Picower Institute rapporterar att roterande vågor av neural aktivitet hjälper hjärnan att återfå fokus efter distraktion. I djurstudier spårade omfattningen av dessa rotationer prestanda: fullständiga rotationer stämde överens med korrekta svar, medan ofullständiga cykler kopplades till fel. Tiden mellan distraktion och svar var också viktig, vilket tyder på en tidsberoende återhämtningscykel.

År 2025 löste ett team ledd av Zaher Hani vid University of Michigan ett av David Hilberts långvariga problem och kopplade sömlöst ihop de matematiska beskrivningarna av vätskor över olika skalor. Genombrottet förbinder mikroskopiskt partikelbeteende med makroskopiska flöden som vatten i ett handfat. Bedriften bygger på tekniker från kvantfältteori och lovar insikter i atmosfäriska och oceaniska dynamiker.

Rapporterad av AI

I mitten av 1800-talet utvecklade matematikern Bernhard Riemann en revolutionerande idé för att förstå matematiska rum. Detta begrepp, känt som mångfald, lade grunden för framsteg inom modern geometri och fysik. Berättelsen kommer från Quanta Magazine och förekom i Wired.

Amatörmatematiker har chockat proffs genom att använda AI-verktyg som ChatGPT för att ta sig an långvariga problem ställda av Paul Erdős. Medan de flesta lösningar återupptäcker befintliga resultat framhäver en ny bevisning AI:s potential att omforma matematisk forskning. Experter ser detta som ett tidigt steg mot bredare tillämpningar inom området.

Rapporterad av AI

Forskare vid Duke University har utvecklat en ram för artificiell intelligens som avslöjar raka regler under högt komplexa system i naturen och tekniken. Publicerad den 17 december i npj Complexity analyserar verktyget tidsseriedata för att producera kompakta ekvationer som fångar essentiella beteenden. Detta tillvägagångssätt kan överbrygga luckor i den vetenskapliga förståelsen där traditionella metoder brister.

Forskare vid Japans RIKEN Center for Emergent Matter Science har banat väg för en metod att snida tredimensionella nanoskala-enheter från enkelkristaller med fokuserade jonstrålar. Genom att forma heliciska strukturer från en magnetisk kristall skapade de växelbara dioder som leder elektricitet företrädesvis i en riktning. Denna geometriska approach kan möjliggöra mer effektiva elektronikkomponenter.

Rapporterad av AI

Ett internationellt team ledd av University of Oxford har upptäckt en av de största roterande strukturerna i universum, en tunn kedja av galaxer som snurrar synkront inom en större kosmisk filament. Strukturen ligger cirka 140 miljoner ljusår från jorden och utmanar modeller för galaxbildning. Resultaten, publicerade i Monthly Notices of the Royal Astronomical Society, tyder på att storskaliga kosmiska strukturer påverkar galaxers rotation.

 

 

 

Denna webbplats använder cookies

Vi använder cookies för analys för att förbättra vår webbplats. Läs vår integritetspolicy för mer information.
Avböj