Scientific illustration of nanoflowers enhancing stem cells with extra mitochondria to rejuvenate aging tissues in a lab study.
Imagem gerada por IA

Nanoflowers supercharge stem cells to recharge aging tissues

Imagem gerada por IA
Verificado

Biomedical engineers at Texas A&M University have used nanoflowers to make stem cells produce roughly twice the usual number of mitochondria. These enhanced stem cells then transfer the extra energy-producing organelles to damaged or aging cells, restoring their energy production and resilience in lab studies, according to a new report in the Proceedings of the National Academy of Sciences.

Researchers led by Dr. Akhilesh K. Gaharwar and Ph.D. student John Soukar in Texas A&M University's Department of Biomedical Engineering have developed microscopic, flower-shaped particles known as nanoflowers, made from molybdenum disulfide (MoS₂). In the presence of these particles, stem cells produced about twice the normal amount of mitochondria, effectively turning them into what the team describes as mitochondrial "bio factories." (sciencedaily.com)

The study, published in the Proceedings of the National Academy of Sciences in 2025 (volume 122, issue 43; DOI: 10.1073/pnas.2505237122), showed that nanoflower-treated stem cells transferred two to four times more mitochondria to neighboring weakened cells than untreated stem cells. This boosted transfer revived energy production and function in the recipient cells and made them more resistant to cell death, even after exposure to damaging agents such as chemotherapy drugs. (sciencedaily.com)

"We have trained healthy cells to share their spare batteries with weaker ones," Gaharwar, a professor of biomedical engineering, said in a Texas A&M news release. "By increasing the number of mitochondria inside donor cells, we can help aging or damaged cells regain their vitality — without any genetic modification or drugs." (sciencedaily.com)

While cells are naturally capable of exchanging some mitochondria, the nanoflower-boosted stem cells transferred their surplus mitochondria to nearby damaged or aging cells several-fold more efficiently than control cells. "The several-fold increase in efficiency was more than we could have hoped for," said Soukar, the paper's lead author. "It's like giving an old electronic a new battery pack. Instead of tossing them out, we are plugging fully-charged batteries from healthy cells into diseased ones." (sciencedaily.com)

Other approaches to increasing mitochondrial numbers in cells often rely on small-molecule drugs that exit cells quickly and may require frequent dosing. By contrast, the nanoflowers are roughly 100 nanometers in diameter and remain inside cells longer, where they continue to stimulate mitochondrial production. As a result, the Texas A&M team notes that therapies based on this nanoflower technology might only need to be administered about once a month, though this timeline remains a projection based on laboratory findings rather than clinical evidence. (engineering.tamu.edu)

Mitochondrial decline has been linked to aging, heart disease and several neurodegenerative conditions. By strengthening the body's natural capacity for intercellular mitochondrial transfer, the technique could in principle be adapted to many tissues. In interviews with Texas A&M, Soukar suggested that enhanced stem cells might one day be delivered near the heart to address cardiomyopathy or injected into skeletal muscles for conditions such as muscular dystrophy, though such applications remain speculative and will require extensive further testing. (sciencedaily.com)

"This is an early but exciting step toward recharging aging tissues using their own biological machinery," Gaharwar said. "If we can safely boost this natural power-sharing system, it could one day help slow or even reverse some effects of cellular aging." (sciencedaily.com)

The nanoflowers are composed of molybdenum disulfide, an inorganic compound that can form two-dimensional, flower-like structures at very small scales. Gaharwar's lab is among a small number of research groups exploring molybdenum disulfide for biomedical applications, including efforts reported separately in Nature Communications to boost mitochondrial regeneration in other disease contexts. (engineering.tamu.edu)

The work received financial support from the National Institutes of Health, the Welch Foundation, the U.S. Department of Defense, the Cancer Prevention and Research Institute of Texas, the President's Excellence Fund at Texas A&M University and the Texas A&M Health Science Center Seedling Grant program. Key collaborators included Texas A&M researchers Dr. Irtisha Singh, Dr. Vishal M. Gohil and Dr. Feng Zhao. (sciencedaily.com)

While still at an early, preclinical stage, the approach builds on the body's natural mitochondrial exchange system and could open the door to future treatments aimed at slowing or mitigating cellular aging and degenerative diseases, pending further safety and efficacy studies in animals and eventually humans. (sciencedaily.com)

O que as pessoas estão dizendo

Initial reactions on X to the Texas A&M nanoflowers stem cell research are sparse and mostly positive, with users highlighting its potential to rejuvenate aging tissues via enhanced mitochondrial transfer. Some express excitement for anti-aging therapies, while a few show skepticism about in vivo applicability or sarcastically reference elite access.

Artigos relacionados

Scientists at Northwestern University lab observing nanotherapy targeting leukemia cells in mice, illustrating cancer treatment breakthrough.
Imagem gerada por IA

Nanoterapia da Northwestern superpotencializa o 5-fluorouracila e poupa células saudáveis em ratos com leucemia

Reportado por IA Imagem gerada por IA Verificado

Uma equipe da Universidade Northwestern relata que redesenhar o medicamento quimioterápico 5-fluorouracila como um ácido nucleico esférico aumentou marcadamente sua captação por células cancerosas e eficácia em modelos de leucemia mieloide aguda, sem efeitos colaterais observáveis, de acordo com um estudo publicado em 29 de outubro na ACS Nano.

Cientistas da Universidade RMIT criaram nanopontos minúsculos de óxido de molibdênio que destroem células cancerosas amplificando o seu stress interno, deixando as células saudáveis em grande parte intactas. Em testes laboratoriais, essas partículas mostraram-se três vezes mais eficazes contra células de cancro do colo do útero do que contra células saudáveis. A pesquisa em estágio inicial aponta para um potencial de tratamentos de cancro mais precisos.

Reportado por IA

Pesquisadores da University of Technology Sydney criaram compostos experimentais que estimulam as mitocôndrias a queimar mais calorias com segurança. Esses desacopladores mitocondriais suaves podem oferecer uma nova abordagem para tratar a obesidade sem os riscos mortais de químicos passados. Os achados, publicados em Chemical Science, destacam benefícios potenciais para a saúde metabólica e envelhecimento.

Cientistas da KAIST na Coreia do Sul desenvolveram uma terapia inovadora que transforma as próprias células imunes de um tumor em combatentes potentes contra o cancro diretamente no interior do corpo. Ao injetar nanopartículas lipídicas nos tumores, o tratamento reprograma macrófagos para produzir proteínas que reconhecem o cancro, superando barreiras no tratamento de tumores sólidos. Estudos iniciais em animais mostram reduções promissoras no crescimento tumoral.

Reportado por IA Verificado

Uma série de estudos recentes em revistas da American Chemical Society descreve organoides cerebrais de dois anos com atividade mensurável, uma luva de electrospinning vestível para remendos de feridas no local, um revestimento comestível do “maçã-lobo” brasileiro que manteve cenouras baby frescas por até 15 dias em temperatura ambiente, e microplásticos detectados em retinas humanas post-mortem.

Cientistas criaram nanopartículas inovadoras projetadas para destruir proteínas prejudiciais ligadas à demência e ao câncer. Essas partículas podem acessar tecidos difíceis como o cérebro e eliminar precisamente proteínas problemáticas sem efeitos colaterais amplos. A tecnologia mostra promessas iniciais para medicina de precisão.

Reportado por IA Verificado

Pesquisadores do Cincinnati Children's Hospital Medical Center descobriram que certos macrófagos, um tipo de célula imune, podem formar conexões rápidas semelhantes a neurônios com fibras musculares para acelerar a cicatrização. Ao entregar pulsos rápidos de cálcio em músculo danificado, essas células desencadeiam atividade relacionada ao reparo em segundos. Os achados, publicados online em 21 de novembro de 2025 no Current Biology, podem eventualmente informar novos tratamentos para lesões musculares e condições degenerativas.

 

 

 

Este site usa cookies

Usamos cookies para análise para melhorar nosso site. Leia nossa política de privacidade para mais informações.
Recusar