Scientific illustration of nanoflowers enhancing stem cells with extra mitochondria to rejuvenate aging tissues in a lab study.
Imagen generada por IA

Nanoflowers supercharge stem cells to recharge aging tissues

Imagen generada por IA
Verificado por hechos

Biomedical engineers at Texas A&M University have used nanoflowers to make stem cells produce roughly twice the usual number of mitochondria. These enhanced stem cells then transfer the extra energy-producing organelles to damaged or aging cells, restoring their energy production and resilience in lab studies, according to a new report in the Proceedings of the National Academy of Sciences.

Researchers led by Dr. Akhilesh K. Gaharwar and Ph.D. student John Soukar in Texas A&M University's Department of Biomedical Engineering have developed microscopic, flower-shaped particles known as nanoflowers, made from molybdenum disulfide (MoS₂). In the presence of these particles, stem cells produced about twice the normal amount of mitochondria, effectively turning them into what the team describes as mitochondrial "bio factories." (sciencedaily.com)

The study, published in the Proceedings of the National Academy of Sciences in 2025 (volume 122, issue 43; DOI: 10.1073/pnas.2505237122), showed that nanoflower-treated stem cells transferred two to four times more mitochondria to neighboring weakened cells than untreated stem cells. This boosted transfer revived energy production and function in the recipient cells and made them more resistant to cell death, even after exposure to damaging agents such as chemotherapy drugs. (sciencedaily.com)

"We have trained healthy cells to share their spare batteries with weaker ones," Gaharwar, a professor of biomedical engineering, said in a Texas A&M news release. "By increasing the number of mitochondria inside donor cells, we can help aging or damaged cells regain their vitality — without any genetic modification or drugs." (sciencedaily.com)

While cells are naturally capable of exchanging some mitochondria, the nanoflower-boosted stem cells transferred their surplus mitochondria to nearby damaged or aging cells several-fold more efficiently than control cells. "The several-fold increase in efficiency was more than we could have hoped for," said Soukar, the paper's lead author. "It's like giving an old electronic a new battery pack. Instead of tossing them out, we are plugging fully-charged batteries from healthy cells into diseased ones." (sciencedaily.com)

Other approaches to increasing mitochondrial numbers in cells often rely on small-molecule drugs that exit cells quickly and may require frequent dosing. By contrast, the nanoflowers are roughly 100 nanometers in diameter and remain inside cells longer, where they continue to stimulate mitochondrial production. As a result, the Texas A&M team notes that therapies based on this nanoflower technology might only need to be administered about once a month, though this timeline remains a projection based on laboratory findings rather than clinical evidence. (engineering.tamu.edu)

Mitochondrial decline has been linked to aging, heart disease and several neurodegenerative conditions. By strengthening the body's natural capacity for intercellular mitochondrial transfer, the technique could in principle be adapted to many tissues. In interviews with Texas A&M, Soukar suggested that enhanced stem cells might one day be delivered near the heart to address cardiomyopathy or injected into skeletal muscles for conditions such as muscular dystrophy, though such applications remain speculative and will require extensive further testing. (sciencedaily.com)

"This is an early but exciting step toward recharging aging tissues using their own biological machinery," Gaharwar said. "If we can safely boost this natural power-sharing system, it could one day help slow or even reverse some effects of cellular aging." (sciencedaily.com)

The nanoflowers are composed of molybdenum disulfide, an inorganic compound that can form two-dimensional, flower-like structures at very small scales. Gaharwar's lab is among a small number of research groups exploring molybdenum disulfide for biomedical applications, including efforts reported separately in Nature Communications to boost mitochondrial regeneration in other disease contexts. (engineering.tamu.edu)

The work received financial support from the National Institutes of Health, the Welch Foundation, the U.S. Department of Defense, the Cancer Prevention and Research Institute of Texas, the President's Excellence Fund at Texas A&M University and the Texas A&M Health Science Center Seedling Grant program. Key collaborators included Texas A&M researchers Dr. Irtisha Singh, Dr. Vishal M. Gohil and Dr. Feng Zhao. (sciencedaily.com)

While still at an early, preclinical stage, the approach builds on the body's natural mitochondrial exchange system and could open the door to future treatments aimed at slowing or mitigating cellular aging and degenerative diseases, pending further safety and efficacy studies in animals and eventually humans. (sciencedaily.com)

Qué dice la gente

Initial reactions on X to the Texas A&M nanoflowers stem cell research are sparse and mostly positive, with users highlighting its potential to rejuvenate aging tissues via enhanced mitochondrial transfer. Some express excitement for anti-aging therapies, while a few show skepticism about in vivo applicability or sarcastically reference elite access.

Artículos relacionados

Scientists at Northwestern University lab observing nanotherapy targeting leukemia cells in mice, illustrating cancer treatment breakthrough.
Imagen generada por IA

Nanoterapia de Northwestern potencia el 5-fluorouracilo y protege las células sanas en ratones con leucemia

Reportado por IA Imagen generada por IA Verificado por hechos

Un equipo de la Universidad Northwestern informa que rediseñar el fármaco quimioterápico 5-fluorouracilo como un ácido nucleico esférico aumentó notablemente su captación y eficacia en células cancerosas en modelos de leucemia mieloide aguda, sin efectos secundarios observables, según un estudio publicado el 29 de octubre en ACS Nano.

Científicos de la Universidad RMIT han creado diminutos nanópuntos de óxido de molibdeno que destruyen células cancerosas amplificando su estrés interno, mientras dejan en gran medida intactas las células sanas. En pruebas de laboratorio, estas partículas resultaron tres veces más efectivas contra células de cáncer cervical que contra las sanas. La investigación en etapa inicial apunta a un potencial para tratamientos contra el cáncer más precisos.

Reportado por IA

Investigadores de la University of Technology Sydney han creado compuestos experimentales que incitan a las mitocondrias a quemar más calorías de forma segura. Estos desacopladores mitocondriales suaves podrían ofrecer un nuevo enfoque para tratar la obesidad sin los riesgos mortales de químicos anteriores. Los hallazgos, publicados en Chemical Science, destacan beneficios potenciales para la salud metabólica y el envejecimiento.

Científicos de KAIST en Corea del Sur han desarrollado una terapia novedosa que transforma las propias células inmunes de un tumor en potentes combatientes contra el cáncer directamente dentro del cuerpo. Al inyectar nanopartículas lipídicas en los tumores, el tratamiento reprograma macrófagos para producir proteínas que reconocen el cáncer, superando barreras en el tratamiento de tumores sólidos. Estudios iniciales en animales muestran prometedoras reducciones en el crecimiento tumoral.

Reportado por IA Verificado por hechos

Una serie de estudios recientes en revistas de la American Chemical Society describe organoides cerebrales de dos años con actividad medible, un guante electrohilador portátil para parches de heridas en el sitio, un recubrimiento comestible del “lobo manzano” brasileño que mantuvo zanahorias baby frescas hasta por 15 días a temperatura ambiente, y microplásticos detectados en retinas humanas post mortem.

Científicos han creado nanopartículas innovadoras diseñadas para destruir proteínas dañinas vinculadas a la demencia y el cáncer. Estas partículas pueden acceder a tejidos difíciles como el cerebro y eliminar con precisión las proteínas problemáticas sin efectos secundarios amplios. La tecnología muestra promesas iniciales para la medicina de precisión.

Reportado por IA Verificado por hechos

Investigadores del Cincinnati Children's Hospital Medical Center han descubierto que ciertos macrófagos, un tipo de célula inmune, pueden formar conexiones rápidas similares a las de las neuronas con las fibras musculares para acelerar la curación. Al entregar pulsos rápidos de calcio en el músculo dañado, estas células desencadenan actividad relacionada con la reparación en segundos. Los hallazgos, publicados en línea el 21 de noviembre de 2025 en *Current Biology*, podrían informar eventualmente nuevos tratamientos para lesiones musculares y condiciones degenerativas.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar