Scientific illustration of nanoflowers enhancing stem cells with extra mitochondria to rejuvenate aging tissues in a lab study.
AIによって生成された画像

Nanoflowers supercharge stem cells to recharge aging tissues

AIによって生成された画像
事実確認済み

Biomedical engineers at Texas A&M University have used nanoflowers to make stem cells produce roughly twice the usual number of mitochondria. These enhanced stem cells then transfer the extra energy-producing organelles to damaged or aging cells, restoring their energy production and resilience in lab studies, according to a new report in the Proceedings of the National Academy of Sciences.

Researchers led by Dr. Akhilesh K. Gaharwar and Ph.D. student John Soukar in Texas A&M University's Department of Biomedical Engineering have developed microscopic, flower-shaped particles known as nanoflowers, made from molybdenum disulfide (MoS₂). In the presence of these particles, stem cells produced about twice the normal amount of mitochondria, effectively turning them into what the team describes as mitochondrial "bio factories." (sciencedaily.com)

The study, published in the Proceedings of the National Academy of Sciences in 2025 (volume 122, issue 43; DOI: 10.1073/pnas.2505237122), showed that nanoflower-treated stem cells transferred two to four times more mitochondria to neighboring weakened cells than untreated stem cells. This boosted transfer revived energy production and function in the recipient cells and made them more resistant to cell death, even after exposure to damaging agents such as chemotherapy drugs. (sciencedaily.com)

"We have trained healthy cells to share their spare batteries with weaker ones," Gaharwar, a professor of biomedical engineering, said in a Texas A&M news release. "By increasing the number of mitochondria inside donor cells, we can help aging or damaged cells regain their vitality — without any genetic modification or drugs." (sciencedaily.com)

While cells are naturally capable of exchanging some mitochondria, the nanoflower-boosted stem cells transferred their surplus mitochondria to nearby damaged or aging cells several-fold more efficiently than control cells. "The several-fold increase in efficiency was more than we could have hoped for," said Soukar, the paper's lead author. "It's like giving an old electronic a new battery pack. Instead of tossing them out, we are plugging fully-charged batteries from healthy cells into diseased ones." (sciencedaily.com)

Other approaches to increasing mitochondrial numbers in cells often rely on small-molecule drugs that exit cells quickly and may require frequent dosing. By contrast, the nanoflowers are roughly 100 nanometers in diameter and remain inside cells longer, where they continue to stimulate mitochondrial production. As a result, the Texas A&M team notes that therapies based on this nanoflower technology might only need to be administered about once a month, though this timeline remains a projection based on laboratory findings rather than clinical evidence. (engineering.tamu.edu)

Mitochondrial decline has been linked to aging, heart disease and several neurodegenerative conditions. By strengthening the body's natural capacity for intercellular mitochondrial transfer, the technique could in principle be adapted to many tissues. In interviews with Texas A&M, Soukar suggested that enhanced stem cells might one day be delivered near the heart to address cardiomyopathy or injected into skeletal muscles for conditions such as muscular dystrophy, though such applications remain speculative and will require extensive further testing. (sciencedaily.com)

"This is an early but exciting step toward recharging aging tissues using their own biological machinery," Gaharwar said. "If we can safely boost this natural power-sharing system, it could one day help slow or even reverse some effects of cellular aging." (sciencedaily.com)

The nanoflowers are composed of molybdenum disulfide, an inorganic compound that can form two-dimensional, flower-like structures at very small scales. Gaharwar's lab is among a small number of research groups exploring molybdenum disulfide for biomedical applications, including efforts reported separately in Nature Communications to boost mitochondrial regeneration in other disease contexts. (engineering.tamu.edu)

The work received financial support from the National Institutes of Health, the Welch Foundation, the U.S. Department of Defense, the Cancer Prevention and Research Institute of Texas, the President's Excellence Fund at Texas A&M University and the Texas A&M Health Science Center Seedling Grant program. Key collaborators included Texas A&M researchers Dr. Irtisha Singh, Dr. Vishal M. Gohil and Dr. Feng Zhao. (sciencedaily.com)

While still at an early, preclinical stage, the approach builds on the body's natural mitochondrial exchange system and could open the door to future treatments aimed at slowing or mitigating cellular aging and degenerative diseases, pending further safety and efficacy studies in animals and eventually humans. (sciencedaily.com)

人々が言っていること

Initial reactions on X to the Texas A&M nanoflowers stem cell research are sparse and mostly positive, with users highlighting its potential to rejuvenate aging tissues via enhanced mitochondrial transfer. Some express excitement for anti-aging therapies, while a few show skepticism about in vivo applicability or sarcastically reference elite access.

関連記事

Scientists at Northwestern University lab observing nanotherapy targeting leukemia cells in mice, illustrating cancer treatment breakthrough.
AIによって生成された画像

Northwesternのナノセラピーが5-フルオロウラシルを強化し、白血病マウスで健康な細胞を保護

AIによるレポート AIによって生成された画像 事実確認済み

Northwestern大学のチームは、化学療法薬5-フルオロウラシルを球状核酸として再設計することで、急性骨髄性白血病モデルでの癌細胞取り込みと有効性を著しく向上させ、観察される副作用なしで、10月29日にACS Nanoに掲載された研究によると報告しています。

RMIT大学の科学者らが、内部ストレスを増幅してがん細胞を破壊し、健康細胞をほぼ無傷に残す微小な酸化モリブデンナノドットを開発した。実験室テストでは、これらの粒子は健康細胞よりも子宮頸がん細胞に対して3倍効果的だった。初期段階の研究は、より精密ながん治療の可能性を示唆している。

AIによるレポート

シドニー工科大学(University of Technology Sydney)の研究者らが、ミトコンドリアに安全に多くのカロリーを燃焼させる実験化合物を開発した。これらの穏やかなミトコンドリア脱共役剤は、過去の化学物質の致命的なリスクなしに肥満治療の新たなアプローチを提供する可能性がある。Chemical Scienceに掲載された知見は、代謝健康と加齢に対する潜在的な利点を強調している。

韓国KAISTの科学者らが、腫瘍自身の免疫細胞を体内で直接強力ながん戦闘員に変える新規療法を開発した。腫瘍に脂質ナノ粒子を注入することで、マクロファージを再プログラムし、がん認識タンパク質を産生させ、固形腫瘍治療の障壁を克服する。初期動物実験で腫瘍成長の有望な減少を示した。

AIによるレポート 事実確認済み

American Chemical Societyのジャーナルに掲載された一連の最近の研究では、2歳の脳オルガノイドで測定可能な活動、現場用の創傷パッチのためのウェアラブル電界紡糸グローブ、ブラジルの「ウルフアップル」から作られた食用コーティングが室温でベビーキャロットを最大15日間新鮮に保ち、死後人間の網膜でマイクロプラスチックが検出されたことが記述されている。

科学者らが認知症やがんに関連する有害タンパク質を破壊するよう設計された革新的なナノ粒子を作成した。これらの粒子は脳などのアクセスしにくい組織に到達し、広範な副作用なしに問題のあるタンパク質を精密に除去できる。この技術は精密医療への初期の有望性を示している。

AIによるレポート 事実確認済み

Cincinnati Children's Hospital Medical Centerの研究者らは、特定のマクロファージという免疫細胞が、筋繊維と急速なニューロン様の接続を形成し、治癒を加速させることがわかりました。損傷した筋肉に迅速なカルシウムパルスを注入することで、これらの細胞は数秒以内に修復関連の活動を引き起こします。この発見は、2025年11月21日にオンラインで*Current Biology*に掲載され、将来的に筋損傷や変性疾患に対する新たな治療法を導く可能性があります。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否