Illustration of gut microbes producing TMA to inhibit inflammation and improve insulin action, contrasting high-fat diet harms with therapeutic potential.
Imagem gerada por IA

Gut microbe molecule TMA may help curb inflammation and improve insulin control

Imagem gerada por IA
Verificado

An international team of researchers has identified trimethylamine (TMA), a gut microbe metabolite produced from dietary nutrients such as choline, as a compound that inhibits the immune-signalling protein IRAK4, dampening inflammation and improving insulin action in experimental models. The discovery, reported in Nature Metabolism, suggests a potential new way to counter some of the harmful metabolic effects of high-fat diets and opens avenues for future type 2 diabetes therapies, a disease affecting more than 500 million people worldwide.

An international study led by scientists at Imperial College London, the French National Centre for Scientific Research (CNRS), Université catholique de Louvain, INSERM in Paris and the University of Ottawa Heart Institute builds on years of research into how diet and the gut microbiome influence metabolism.

According to background described by the team and earlier work from co-author Professor Patrice Cani, high-fat diets can allow bacterial components such as lipopolysaccharides to enter the bloodstream, activating immune pathways and promoting the low-grade inflammation that contributes to insulin resistance in type 2 diabetes. That concept, sometimes referred to as "metabolic endotoxemia", was considered controversial when first proposed in the mid‑2000s but is now widely supported in the metabolic disease field.

In the new work, published 8 December 2025 in Nature Metabolism, researchers report that TMA, a small molecule generated by gut bacteria when they break down nutrients including choline in food, can modulate this inflammatory process.

The study shows that under a high‑fat diet, the signalling protein IRAK4 (interleukin‑1 receptor‑associated kinase 4) is a central regulator of immune activation that drives chronic, diet‑induced inflammation and impaired insulin responses. Using a combination of primary human cell models, mouse experiments and molecular screening approaches, the team found that TMA binds to IRAK4 and inhibits its kinase activity. In these experimental systems, TMA reduced inflammation linked to high‑fat feeding and improved glycaemic control and insulin sensitivity.

The researchers also report that TMA improved survival in mice exposed to lipopolysaccharide‑induced septic shock by attenuating overwhelming inflammatory responses, an effect consistent with its IRAK4‑blocking action. Genetic deletion or pharmacological inhibition of IRAK4 produced comparable improvements in metabolic and immune parameters in high‑fat‑fed mice, reinforcing IRAK4 as a potential drug target, according to the study in Nature Metabolism.

“This flips the narrative,” said Professor Marc‑Emmanuel Dumas of Imperial College London and CNRS, one of the senior authors, in a statement released by the University of Ottawa Heart Institute and other institutional partners. “We’ve shown that a molecule from our gut microbes can actually protect against the harmful effects of a poor diet through a new mechanism. It’s a new way of thinking about how the microbiome influences our health.”

“This shows how nutrition and our gut microbes can work together by producing molecules that fight inflammation and improve metabolic health,” added Professor Patrice Cani of Université catholique de Louvain and Imperial College London.

The research team included collaborators from Belgium, Canada, Australia, France, Italy and Spain. The work was supported by a range of national and international funders, including European and UK agencies such as the European Research Council and the Medical Research Council, as described in the study acknowledgments.

The authors note that TMA’s actions appear to differ from those of its liver‑derived co‑metabolite trimethylamine N‑oxide (TMAO), which has been associated in previous research with cardiovascular risk. In the context of diet‑induced obesity in mice, increasing TMA relative to TMAO by targeting the enzyme that converts TMA to TMAO improved immune tone and glucose control in their experiments, suggesting that carefully modulating this metabolic axis could be a future strategy to combat insulin resistance. However, the researchers stress that the current findings are based on preclinical models and mechanistic studies, and that more work will be needed before any clinical applications can be developed.

O que as pessoas estão dizendo

Initial reactions on X to the Nature Metabolism study are predominantly positive among scientists, researchers, and health news outlets. Key points highlighted include TMA's role in inhibiting IRAK4 to reduce inflammation, improve insulin sensitivity, and counter high-fat diet effects, with potential for type 2 diabetes therapies. Prominent figures express excitement about microbiome's protective mechanisms. No significant negative or skeptical views observed.

Artigos relacionados

Realistic illustration of mouse gut microbiome metabolites traveling to liver, impacting energy and insulin for obesity-diabetes research.
Imagem gerada por IA

Estudo liderado por Harvard mapeia metabólitos intestinais que podem moldar risco de obesidade e diabetes

Reportado por IA Imagem gerada por IA Verificado

Pesquisadores da Universidade de Harvard e colaboradores no Brasil identificaram metabólitos produzidos por bactérias intestinais que viajam pela veia porta até o fígado e parecem influenciar o uso de energia e a sensibilidade à insulina em camundongos. Os achados, publicados em Cell Metabolism, sugerem possíveis novas estratégias para prevenir ou tratar obesidade e diabetes tipo 2 ao mirar a comunicação intestino-fígado.([sciencedaily.com](https://www.sciencedaily.com/releases/2025/12/251214100926.htm?utm_source=openai))

Um novo estudo revela que o dano da quimioterapia no revestimento intestinal reconfigura inesperadamente o microbioma, produzindo um composto que fortalece as defesas imunitárias contra a disseminação do cancro. Este processo reduz células imunossupressoras e melhora a resistência à metástase, particularmente no fígado. Dados de pacientes ligam níveis mais elevados deste composto a uma melhor sobrevivência em casos de cancro colorretal.

Reportado por IA

Pesquisadores descobriram uma assinatura única do microbioma oral em pessoas com obesidade, oferecendo potencialmente estratégias de deteção e prevenção precoces. A descoberta, baseada em amostras de saliva de adultos emiratis, destaca diferenças em bactérias e vias metabólicas associadas à disfunção metabólica. No entanto, os cientistas alertam que a causalidade da relação permanece incerta.

Um pequeno ensaio clínico mostra que transplantes de microbiota fecal podem melhorar os resultados em pacientes com cancro do rim em drogas de imunoterapia. Os participantes que receberam transplantes experimentaram maior estabilidade do cancro e maior redução tumoral em comparação com aqueles que receberam placebos. A abordagem visa o microbioma intestinal para impulsionar respostas imunes contra tumores.

Reportado por IA

Nova pesquisa do MIT demonstra que dietas ricas em gordura prolongadas empurram células do fígado para um estado primitivo, aumentando sua vulnerabilidade ao câncer. Ao analisar amostras de camundongos e humanas, cientistas descobriram como essas mudanças celulares priorizam a sobrevivência sobre a função normal, abrindo caminho para tumores. Os achados, publicados na Cell, destacam alvos de drogas potenciais para mitigar esse risco.

Pesquisadores identificaram metabolitos de indol da bactéria do sangue humano Paracoccus sanguinis que mostraram atividade anti-envelhecimento em células de pele humana cultivadas em laboratório. Os compostos reduziram o estresse oxidativo, inflamação e atividade degradadora de colágeno em experimentos com células, de acordo com achados publicados no Journal of Natural Products.

Reportado por IA Verificado

Researchers at Karolinska Institutet and Stockholm University have developed an experimental oral drug that boosts metabolism in skeletal muscle, improving blood sugar control and fat burning in early studies without reducing appetite or muscle mass. Unlike GLP-1-based drugs such as Ozempic, the candidate acts directly on muscle tissue and has shown good tolerability in an initial clinical trial, according to the study authors.

 

 

 

Este site usa cookies

Usamos cookies para análise para melhorar nosso site. Leia nossa política de privacidade para mais informações.
Recusar