Illustration of gut microbes producing TMA to inhibit inflammation and improve insulin action, contrasting high-fat diet harms with therapeutic potential.
Imagen generada por IA

Gut microbe molecule TMA may help curb inflammation and improve insulin control

Imagen generada por IA
Verificado por hechos

An international team of researchers has identified trimethylamine (TMA), a gut microbe metabolite produced from dietary nutrients such as choline, as a compound that inhibits the immune-signalling protein IRAK4, dampening inflammation and improving insulin action in experimental models. The discovery, reported in Nature Metabolism, suggests a potential new way to counter some of the harmful metabolic effects of high-fat diets and opens avenues for future type 2 diabetes therapies, a disease affecting more than 500 million people worldwide.

An international study led by scientists at Imperial College London, the French National Centre for Scientific Research (CNRS), Université catholique de Louvain, INSERM in Paris and the University of Ottawa Heart Institute builds on years of research into how diet and the gut microbiome influence metabolism.

According to background described by the team and earlier work from co-author Professor Patrice Cani, high-fat diets can allow bacterial components such as lipopolysaccharides to enter the bloodstream, activating immune pathways and promoting the low-grade inflammation that contributes to insulin resistance in type 2 diabetes. That concept, sometimes referred to as "metabolic endotoxemia", was considered controversial when first proposed in the mid‑2000s but is now widely supported in the metabolic disease field.

In the new work, published 8 December 2025 in Nature Metabolism, researchers report that TMA, a small molecule generated by gut bacteria when they break down nutrients including choline in food, can modulate this inflammatory process.

The study shows that under a high‑fat diet, the signalling protein IRAK4 (interleukin‑1 receptor‑associated kinase 4) is a central regulator of immune activation that drives chronic, diet‑induced inflammation and impaired insulin responses. Using a combination of primary human cell models, mouse experiments and molecular screening approaches, the team found that TMA binds to IRAK4 and inhibits its kinase activity. In these experimental systems, TMA reduced inflammation linked to high‑fat feeding and improved glycaemic control and insulin sensitivity.

The researchers also report that TMA improved survival in mice exposed to lipopolysaccharide‑induced septic shock by attenuating overwhelming inflammatory responses, an effect consistent with its IRAK4‑blocking action. Genetic deletion or pharmacological inhibition of IRAK4 produced comparable improvements in metabolic and immune parameters in high‑fat‑fed mice, reinforcing IRAK4 as a potential drug target, according to the study in Nature Metabolism.

“This flips the narrative,” said Professor Marc‑Emmanuel Dumas of Imperial College London and CNRS, one of the senior authors, in a statement released by the University of Ottawa Heart Institute and other institutional partners. “We’ve shown that a molecule from our gut microbes can actually protect against the harmful effects of a poor diet through a new mechanism. It’s a new way of thinking about how the microbiome influences our health.”

“This shows how nutrition and our gut microbes can work together by producing molecules that fight inflammation and improve metabolic health,” added Professor Patrice Cani of Université catholique de Louvain and Imperial College London.

The research team included collaborators from Belgium, Canada, Australia, France, Italy and Spain. The work was supported by a range of national and international funders, including European and UK agencies such as the European Research Council and the Medical Research Council, as described in the study acknowledgments.

The authors note that TMA’s actions appear to differ from those of its liver‑derived co‑metabolite trimethylamine N‑oxide (TMAO), which has been associated in previous research with cardiovascular risk. In the context of diet‑induced obesity in mice, increasing TMA relative to TMAO by targeting the enzyme that converts TMA to TMAO improved immune tone and glucose control in their experiments, suggesting that carefully modulating this metabolic axis could be a future strategy to combat insulin resistance. However, the researchers stress that the current findings are based on preclinical models and mechanistic studies, and that more work will be needed before any clinical applications can be developed.

Qué dice la gente

Initial reactions on X to the Nature Metabolism study are predominantly positive among scientists, researchers, and health news outlets. Key points highlighted include TMA's role in inhibiting IRAK4 to reduce inflammation, improve insulin sensitivity, and counter high-fat diet effects, with potential for type 2 diabetes therapies. Prominent figures express excitement about microbiome's protective mechanisms. No significant negative or skeptical views observed.

Artículos relacionados

Realistic illustration of mouse gut microbiome metabolites traveling to liver, impacting energy and insulin for obesity-diabetes research.
Imagen generada por IA

Estudio liderado por Harvard mapea metabolitos intestinales que pueden influir en el riesgo de obesidad y diabetes

Reportado por IA Imagen generada por IA Verificado por hechos

Investigadores de la Universidad de Harvard y colaboradores en Brasil han identificado metabolitos producidos por bacterias intestinales que viajan a través de la vena porta al hígado y parecen influir en el uso de energía y la sensibilidad a la insulina en ratones. Los hallazgos, publicados en Cell Metabolism, sugieren posibles nuevas estrategias para prevenir o tratar la obesidad y la diabetes tipo 2 al dirigirse a la comunicación intestino-hígado.([sciencedaily.com](https://www.sciencedaily.com/releases/2025/12/251214100926.htm?utm_source=openai))

Un nuevo estudio revela que el daño de la quimioterapia en el revestimiento intestinal reconfigura inesperadamente la microbiota, produciendo un compuesto que fortalece las defensas inmunitarias contra la propagación del cáncer. Este proceso reduce las células inmunosupresoras y mejora la resistencia a la metástasis, particularmente en el hígado. Datos de pacientes vinculan niveles más altos de este compuesto con una mejor supervivencia en casos de cáncer colorrectal.

Reportado por IA

Los investigadores han descubierto una firma única del microbioma oral en personas con obesidad, que podría ofrecer estrategias de detección y prevención temprana. El hallazgo, basado en muestras de saliva de adultos emiratíes, destaca diferencias en bacterias y vías metabólicas asociadas con la disfunción metabólica. Sin embargo, los científicos advierten que la causalidad de la relación sigue sin aclararse.

Un pequeño ensayo clínico muestra que los trasplantes de microbiota fecal pueden mejorar los resultados en pacientes con cáncer de riñón tratados con fármacos de inmunoterapia. Los participantes que recibieron trasplantes experimentaron una mayor estabilidad del cáncer y una reducción tumoral más pronunciada en comparación con aquellos que recibieron placebos. El enfoque se dirige al microbioma intestinal para potenciar las respuestas inmunes contra los tumores.

Reportado por IA

Nueva investigación del MIT demuestra que las dietas altas en grasas prolongadas impulsan las células hepáticas a un estado primitivo, aumentando su vulnerabilidad al cáncer. Al analizar muestras de ratones y humanos, los científicos descubrieron cómo estos cambios celulares priorizan la supervivencia sobre la función normal, allanando el camino para los tumores. Los hallazgos, publicados en Cell, destacan posibles dianas farmacológicas para mitigar este riesgo.

Los investigadores han identificado metabolitos de indol de la bacteria Paracoccus sanguinis presente en la sangre humana que mostraron actividad antienvejecimiento en células cutáneas humanas cultivadas en laboratorio. Los compuestos redujeron el estrés oxidativo, la inflamación y la actividad degradadora del colágeno en experimentos celulares, según hallazgos publicados en el Journal of Natural Products.

Reportado por IA Verificado por hechos

Researchers at Karolinska Institutet and Stockholm University have developed an experimental oral drug that boosts metabolism in skeletal muscle, improving blood sugar control and fat burning in early studies without reducing appetite or muscle mass. Unlike GLP-1-based drugs such as Ozempic, the candidate acts directly on muscle tissue and has shown good tolerability in an initial clinical trial, according to the study authors.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar