Scientists in a lab visualizing the MED1 molecular switch enabling breast cancer cell stress resistance, for cancer therapy insights.
صورة مولدة بواسطة الذكاء الاصطناعي

Scientists pinpoint MED1 ‘switch’ that helps breast cancer cells withstand stress

صورة مولدة بواسطة الذكاء الاصطناعي
تم التحقق من الحقائق

Researchers at The Rockefeller University have identified a molecular switch in breast cancer cells that helps them survive harsh conditions. The switch involves deacetylation of the MED1 protein, which boosts stress-response gene activity linked to tumor growth and resilience. The work, reported in Nature Chemical Biology, points to potential new targets for cancer therapy.

Cancer cells often flourish in hostile tumor environments, such as regions with low oxygen or high oxidative stress. Seeking to understand how breast cancer cells adapt, a team led by Robert Roeder at The Rockefeller University examined how changes in gene transcription enable tumor cells to cope with these conditions.

The researchers focused on the Mediator complex, a large protein assembly that helps RNA polymerase II (Pol II) transcribe genes. One key subunit, MED1, is required for Pol II-driven transcription in many cell types, including estrogen receptor-positive breast cancer (ER+ BC), one of the most common categories of breast cancer. Earlier work from Roeder’s lab showed that MED1 interacts with estrogen receptors to strongly activate gene expression in ER+ BC, and in some cases this interaction can reduce the effectiveness of cancer drugs, according to Rockefeller University and ScienceDaily summaries of the study.

First author Ran Lin began by asking whether MED1 is modified by acetylation, a chemical change in which an acetyl group is added to a protein and its function can be altered. After confirming that MED1 is acetylated, the team exposed cells to several types of stress, including hypoxia (lack of oxygen), oxidative stress, and heat or thermal stress.

Under these stressful conditions, the enzyme SIRT1 removed acetyl groups from MED1 in a process known as deacetylation. The deacetylated MED1 then associated more efficiently with Pol II, increasing the potential to activate genes that help cells cope with damage and other stressors, the Rockefeller account reports.

To test this mechanism more directly, the researchers engineered a mutant form of MED1 lacking six specific acetylation sites, making it unable to be acetylated. They introduced this mutant protein into ER+ breast cancer cells in which the endogenous MED1 had been removed using CRISPR-based gene editing. In laboratory and animal models, breast cancer cells containing deacetylated or non-acetylatable MED1 formed faster-growing and more stress-resistant tumors than cells with normal MED1, according to the Rockefeller and ScienceDaily reports.

“This previously unknown transcription-level mechanism helps the cancer cells survive stressful conditions, so targeting it could disrupt a key survival mechanism that some cancers rely on,” Lin said in comments released by Rockefeller University and carried by ScienceDaily.

Roeder added that “this molecular switch is mediated by a generic transcription complex normally required for all protein-coding genes,” and that its subunits can be repurposed for functions that allow cancer cells to survive and grow in high-stress environments, according to the same institutional summary.

Lin described the effect as a regulatory switch: “Our work reveals that the acetylation and deacetylation of MED1 act as a regulatory switch that helps cancer cells reprogram transcription in response to stress, supporting both survival and growth,” he said. He noted that in cancer — particularly ER+ breast cancer — this pathway may be intensified to support abnormal growth and survival and could inform future drug development.

Roeder said the MED1 regulatory pathway appears to fit into a broader paradigm in which acetylation controls transcription factors, pointing to earlier work on the tumor-suppressor protein p53 from his lab. He emphasized that understanding such basic mechanisms can reveal pathways that might eventually be leveraged for new therapies.

Taken together, the findings highlight how fundamental research on transcriptional regulation can uncover therapeutic opportunities, especially for ER+ breast cancers and potentially other malignancies that rely on stress-induced gene reprogramming.

ما يقوله الناس

Limited discussions on X praise the Rockefeller University discovery of a MED1 protein deacetylation switch enabling breast cancer cells to survive stress, viewing it as a promising new target for cancer therapies. Posts from scientists, news outlets, and enthusiasts highlight the breakthrough without notable skepticism.

مقالات ذات صلة

Illustration of scientists mapping proteins enabling carcinomas to change identity in pancreatic and lung cancers, revealing potential therapy targets.
صورة مولدة بواسطة الذكاء الاصطناعي

علماء يرسمون خريطة البروتينات التي تسمح للكارسينومات بتغيير هويتها

من إعداد الذكاء الاصطناعي صورة مولدة بواسطة الذكاء الاصطناعي تم التحقق من الحقائق

بحثوا في مختبر كولد سبرينغ هاربر حددوا بروتينات رئيسية ومجمعات بروتينية تساعد بعض الكارسينومات على تغيير هويتها الخلوية وربما التهرب من العلاج. دراستان جديدتان، تركزان على سرطان البنكرياس وسرطان الرئة خلايا الشووشة، تبرزان هياكل جزيئية يمكن أن تصبح أهدافًا لعلاجات أكثر دقة وانتقائية.

اكتشف باحثون في درسدن أن بروتين MCL1، المعروف بمساعدة خلايا السرطان على التهرب من الموت، ينظم أيضًا إنتاج طاقتها من خلال مسار mTOR. يفسر هذا الدور المزدوج لماذا يمكن للأدوية التي تستهدف MCL1 مكافحة الأورام ولكنها تؤذي القلب أحيانًا. طور الفريق نهجًا غذائيًا لتخفيف هذه السمية القلبية، ممهدًا الطريق لعلاجات أكثر أمانًا.

من إعداد الذكاء الاصطناعي تم التحقق من الحقائق

أفاد باحثون في جامعة كاليفورنيا سان دييغو بأن خلايا سرطانية معينة تنجو من العلاجات الموجهة باستخدام تنشيط منخفض المستوى لإنزيم مرتبط بموت الخلية، مما يمكّنها من تحمل العلاج وإعادة نمو الأورام لاحقًا. بما أن هذا الآلية المقاومة لا تعتمد على طفرات جينية جديدة، فإنها تظهر مبكرًا في العلاج وقد تقدم هدفًا جديدًا لمساعدة في منع عودة الورم.

طوّر باحثون من معهد MIT وجامعة ستانفورد جزيئات متعددة الوظائف تُدعى AbLecs لحجب نقاط التفتيش المناعية القائمة على السكريات في الخلايا السرطانية. يهدف هذا النهج إلى تعزيز العلاج المناعي من خلال تمكين الخلايا المناعية من استهداف الأورام بشكل أفضل. أظهرت الاختبارات الأولية في الخلايا والفئران نتائج واعدة في تعزيز الاستجابات المضادة للأورام.

من إعداد الذكاء الاصطناعي تم التحقق من الحقائق

طوّر الباحثون تقنية رسم خرائط جينومية تكشف كيفية عمل آلاف الجينات معًا للتأثير على مخاطر الإصابة بالأمراض، مما يساعد في سد الفجوات التي تركتها الدراسات الوراثية التقليدية. النهج، الذي وُصف في ورقة بحثية في مجلة Nature بقيادة علماء من معاهد Gladstones وجامعة ستانفورد، يجمع بين تجارب خلوية واسعة النطاق وبيانات الوراثة السكانية لإبراز أهداف واعدة للعلاجات المستقبلية وتعميق فهم الحالات مثل اضطرابات الدم والأمراض المناعية.

اكتشف باحثون يابانيون كيف تستخدم الخلايا السرطانية حويصلات صغيرة لنشر بروتين PD-L1 المثبط للمناعة، مما يفسر فشل العلاج المناعي غالباً. يدير بروتين يدعى UBL3 هذه العملية، لكن الستاتينات الشائعة يمكن أن تعطلها، مما قد يعزز فعالية العلاج. النتائج، من عينات المرضى واختبارات المختبر، تقترح طريقة بسيطة لتحسين النتائج لمرضى سرطان الرئة.

من إعداد الذكاء الاصطناعي تم التحقق من الحقائق

يُبلغ باحثون يابانيون أن شيب الشعر والميلانوما يمكن أن ينشأا من نفس الخلايا الجذعية الميلانوسيتية، التي تأخذ مسارات مختلفة اعتمادًا على تلف الحمض النووي والإشارات المحلية. نُشر عبر الإنترنت في 6 أكتوبر 2025 في Nature Cell Biology، يصف الدراسة التي قادتها جامعة طوكيو برنامجًا للتمايز الواقي الذي يعزز الشيب وكيف يمكن للمواد المسرطنة أن تعطل هذا البرنامج لصالح الميلانوما.

19 يناير 2026 11:12

سرطان الثدي يعطل إيقاعات الدماغ مبكراً في الفئران

10 يناير 2026 22:47

دراسة ترسم دائرة SRSF1–AURKA–MYC المتعززة ذاتيًا في خلايا سرطان البنكرياس

05 يناير 2026 00:35

تحرير الإبيجينوم باستخدام CRISPR يفعّل الجينات بإزالة علامات الميثيل بدون قطع الـDNA

01 يناير 2026 02:31

دراسة MIT تكشف أن الحميات عالية الدهون تعزز خطر الإصابة بسرطان الكبد

27 ديسمبر 2025 06:29

باحثون يكتشفون اعتماد خلايا السرطان على آلية إصلاح خطيرة للحمض النووي

19 ديسمبر 2025 13:07

يكتشف العلماء معززات الـDNA الوظيفية في خلايا الدماغ المرتبطة بمرض الزهايمر

19 ديسمبر 2025 00:31

علماء يكتشفون حركة مشابهة للزنبرك في مستقبل الخلية التائية التي قد تحسن العلاج المناعي للسرطان

13 ديسمبر 2025 16:38

يستعرض الدكتور إريك نستلر علم الطب النفسي الجزيئي وعلم المرونة

26 نوفمبر 2025 01:02

يعلن العلماء كيف تُطلق تصادمات الريبوسومات إنذار توتر خلوي

17 نوفمبر 2025 07:51

إزالة NRF2 باستخدام CRISPR تعيد حساسية الأورام الرئوية المقاومة للأدوية في دراسة ما قبل السريرية

 

 

 

يستخدم هذا الموقع ملفات تعريف الارتباط

نستخدم ملفات تعريف الارتباط للتحليلات لتحسين موقعنا. اقرأ سياسة الخصوصية الخاصة بنا سياسة الخصوصية لمزيد من المعلومات.
رفض