Scientists in a lab visualizing the MED1 molecular switch enabling breast cancer cell stress resistance, for cancer therapy insights.
Bild genererad av AI

Scientists pinpoint MED1 ‘switch’ that helps breast cancer cells withstand stress

Bild genererad av AI
Faktagranskad

Researchers at The Rockefeller University have identified a molecular switch in breast cancer cells that helps them survive harsh conditions. The switch involves deacetylation of the MED1 protein, which boosts stress-response gene activity linked to tumor growth and resilience. The work, reported in Nature Chemical Biology, points to potential new targets for cancer therapy.

Cancer cells often flourish in hostile tumor environments, such as regions with low oxygen or high oxidative stress. Seeking to understand how breast cancer cells adapt, a team led by Robert Roeder at The Rockefeller University examined how changes in gene transcription enable tumor cells to cope with these conditions.

The researchers focused on the Mediator complex, a large protein assembly that helps RNA polymerase II (Pol II) transcribe genes. One key subunit, MED1, is required for Pol II-driven transcription in many cell types, including estrogen receptor-positive breast cancer (ER+ BC), one of the most common categories of breast cancer. Earlier work from Roeder’s lab showed that MED1 interacts with estrogen receptors to strongly activate gene expression in ER+ BC, and in some cases this interaction can reduce the effectiveness of cancer drugs, according to Rockefeller University and ScienceDaily summaries of the study.

First author Ran Lin began by asking whether MED1 is modified by acetylation, a chemical change in which an acetyl group is added to a protein and its function can be altered. After confirming that MED1 is acetylated, the team exposed cells to several types of stress, including hypoxia (lack of oxygen), oxidative stress, and heat or thermal stress.

Under these stressful conditions, the enzyme SIRT1 removed acetyl groups from MED1 in a process known as deacetylation. The deacetylated MED1 then associated more efficiently with Pol II, increasing the potential to activate genes that help cells cope with damage and other stressors, the Rockefeller account reports.

To test this mechanism more directly, the researchers engineered a mutant form of MED1 lacking six specific acetylation sites, making it unable to be acetylated. They introduced this mutant protein into ER+ breast cancer cells in which the endogenous MED1 had been removed using CRISPR-based gene editing. In laboratory and animal models, breast cancer cells containing deacetylated or non-acetylatable MED1 formed faster-growing and more stress-resistant tumors than cells with normal MED1, according to the Rockefeller and ScienceDaily reports.

“This previously unknown transcription-level mechanism helps the cancer cells survive stressful conditions, so targeting it could disrupt a key survival mechanism that some cancers rely on,” Lin said in comments released by Rockefeller University and carried by ScienceDaily.

Roeder added that “this molecular switch is mediated by a generic transcription complex normally required for all protein-coding genes,” and that its subunits can be repurposed for functions that allow cancer cells to survive and grow in high-stress environments, according to the same institutional summary.

Lin described the effect as a regulatory switch: “Our work reveals that the acetylation and deacetylation of MED1 act as a regulatory switch that helps cancer cells reprogram transcription in response to stress, supporting both survival and growth,” he said. He noted that in cancer — particularly ER+ breast cancer — this pathway may be intensified to support abnormal growth and survival and could inform future drug development.

Roeder said the MED1 regulatory pathway appears to fit into a broader paradigm in which acetylation controls transcription factors, pointing to earlier work on the tumor-suppressor protein p53 from his lab. He emphasized that understanding such basic mechanisms can reveal pathways that might eventually be leveraged for new therapies.

Taken together, the findings highlight how fundamental research on transcriptional regulation can uncover therapeutic opportunities, especially for ER+ breast cancers and potentially other malignancies that rely on stress-induced gene reprogramming.

Vad folk säger

Limited discussions on X praise the Rockefeller University discovery of a MED1 protein deacetylation switch enabling breast cancer cells to survive stress, viewing it as a promising new target for cancer therapies. Posts from scientists, news outlets, and enthusiasts highlight the breakthrough without notable skepticism.

Relaterade artiklar

Illustration of scientists mapping proteins enabling carcinomas to change identity in pancreatic and lung cancers, revealing potential therapy targets.
Bild genererad av AI

Forskare kartlägger proteiner som låter carcinom byta identitet

Rapporterad av AI Bild genererad av AI Faktagranskad

Forskare vid Cold Spring Harbor Laboratory har identifierat nyckelproteiner och proteinkomplex som hjälper vissa carcinom att skifta sin cellulära identitet och potentiellt undvika behandling. Två nya studier, med fokus på bukspottkörtelcancer och tuftcellslungcancer, belyser molekylära strukturer som kan bli mål för mer precisa och selektiva behandlingar.

Forskare i Dresden har upptäckt att proteinet MCL1, känt för att hjälpa cancerceller att undvika död, också reglerar deras energiproduktion via mTOR-vägen. Denna dubbla roll förklarar varför läkemedel som riktar sig mot MCL1 kan bekämpa tumörer men ibland skada hjärtat. Teamet har utvecklat en dietmetod för att mildra denna kardiotoxicitet, vilket banar väg för säkrare behandlingar.

Rapporterad av AI Faktagranskad

Forskare vid University of California San Diego rapporterar att vissa cancerceller överlever riktade behandlingar genom att använda låg-nivå-aktivering av ett med cell döds-kopplat enzym, vilket gör att de tål behandlingen och senare återväxter tumörer. Eftersom denna resistensmekanism inte beror på nya genetiska mutationer, uppstår den tidigt i behandlingen och kan erbjuda ett nytt mål för att hjälpa till att förhindra tumöråterfall.

Forskare från MIT och Stanford University har utvecklat multifunktionella molekyler kallade AbLecs för att blockera sockerbaserade immunkontrollpunkter på cancerceller. Detta tillvägagångssätt syftar till att förbättra immunterapi genom att låta immunceller bättre rikta in sig på tumörer. Tidiga tester på celler och möss visar lovande resultat för att förstärka antitumörsvaret.

Rapporterad av AI Faktagranskad

Forskare har utvecklat en genomisk kartläggningsteknik som visar hur tusentals gener samverkar för att påverka sjukdomsrisk, och hjälper till att överbrygga luckor som lämnats av traditionella genetiska studier. Metoden, som beskrivs i en Nature-artikel ledd av forskare från Gladstone Institutes och Stanford University, kombinerar storskaliga cellförsök med populationsgenetiska data för att lyfta fram lovande mål för framtida behandlingar och fördjupa förståelsen av tillstånd som blodsjukdomar och immunmedierade sjukdomar.

Forskare i Japan har avslöjat hur cancerceller använder små vesiklar för att sprida den immunhämmande proteinet PD-L1, vilket förklarar varför immunterapi ofta misslyckas. Ett protein kallat UBL3 styr denna process, men vanliga statiner kan störa den och potentiellt öka behandlingseffektiviteten. Resultaten, från patientprover och labbtester, föreslår ett enkelt sätt att förbättra utfall för lungcancerpatienter.

Rapporterad av AI Faktagranskad

Japanska forskare rapporterar att håravgråning och melanom kan uppstå från samma melanocytstamceller, som tar olika vägar beroende på DNA-skador och lokala signaler. Publicerad online den 6 oktober 2025 i Nature Cell Biology beskriver den av University of Tokyo-ledda studien ett skyddande differentieringsprogram som främjar avgråning och hur carcinogener kan kringgå det för att gynna melanom.

 

 

 

Denna webbplats använder cookies

Vi använder cookies för analys för att förbättra vår webbplats. Läs vår integritetspolicy för mer information.
Avböj