Scientists in a lab visualizing the MED1 molecular switch enabling breast cancer cell stress resistance, for cancer therapy insights.
AIによって生成された画像

Scientists pinpoint MED1 ‘switch’ that helps breast cancer cells withstand stress

AIによって生成された画像
事実確認済み

Researchers at The Rockefeller University have identified a molecular switch in breast cancer cells that helps them survive harsh conditions. The switch involves deacetylation of the MED1 protein, which boosts stress-response gene activity linked to tumor growth and resilience. The work, reported in Nature Chemical Biology, points to potential new targets for cancer therapy.

Cancer cells often flourish in hostile tumor environments, such as regions with low oxygen or high oxidative stress. Seeking to understand how breast cancer cells adapt, a team led by Robert Roeder at The Rockefeller University examined how changes in gene transcription enable tumor cells to cope with these conditions.

The researchers focused on the Mediator complex, a large protein assembly that helps RNA polymerase II (Pol II) transcribe genes. One key subunit, MED1, is required for Pol II-driven transcription in many cell types, including estrogen receptor-positive breast cancer (ER+ BC), one of the most common categories of breast cancer. Earlier work from Roeder’s lab showed that MED1 interacts with estrogen receptors to strongly activate gene expression in ER+ BC, and in some cases this interaction can reduce the effectiveness of cancer drugs, according to Rockefeller University and ScienceDaily summaries of the study.

First author Ran Lin began by asking whether MED1 is modified by acetylation, a chemical change in which an acetyl group is added to a protein and its function can be altered. After confirming that MED1 is acetylated, the team exposed cells to several types of stress, including hypoxia (lack of oxygen), oxidative stress, and heat or thermal stress.

Under these stressful conditions, the enzyme SIRT1 removed acetyl groups from MED1 in a process known as deacetylation. The deacetylated MED1 then associated more efficiently with Pol II, increasing the potential to activate genes that help cells cope with damage and other stressors, the Rockefeller account reports.

To test this mechanism more directly, the researchers engineered a mutant form of MED1 lacking six specific acetylation sites, making it unable to be acetylated. They introduced this mutant protein into ER+ breast cancer cells in which the endogenous MED1 had been removed using CRISPR-based gene editing. In laboratory and animal models, breast cancer cells containing deacetylated or non-acetylatable MED1 formed faster-growing and more stress-resistant tumors than cells with normal MED1, according to the Rockefeller and ScienceDaily reports.

“This previously unknown transcription-level mechanism helps the cancer cells survive stressful conditions, so targeting it could disrupt a key survival mechanism that some cancers rely on,” Lin said in comments released by Rockefeller University and carried by ScienceDaily.

Roeder added that “this molecular switch is mediated by a generic transcription complex normally required for all protein-coding genes,” and that its subunits can be repurposed for functions that allow cancer cells to survive and grow in high-stress environments, according to the same institutional summary.

Lin described the effect as a regulatory switch: “Our work reveals that the acetylation and deacetylation of MED1 act as a regulatory switch that helps cancer cells reprogram transcription in response to stress, supporting both survival and growth,” he said. He noted that in cancer — particularly ER+ breast cancer — this pathway may be intensified to support abnormal growth and survival and could inform future drug development.

Roeder said the MED1 regulatory pathway appears to fit into a broader paradigm in which acetylation controls transcription factors, pointing to earlier work on the tumor-suppressor protein p53 from his lab. He emphasized that understanding such basic mechanisms can reveal pathways that might eventually be leveraged for new therapies.

Taken together, the findings highlight how fundamental research on transcriptional regulation can uncover therapeutic opportunities, especially for ER+ breast cancers and potentially other malignancies that rely on stress-induced gene reprogramming.

人々が言っていること

Limited discussions on X praise the Rockefeller University discovery of a MED1 protein deacetylation switch enabling breast cancer cells to survive stress, viewing it as a promising new target for cancer therapies. Posts from scientists, news outlets, and enthusiasts highlight the breakthrough without notable skepticism.

関連記事

Illustration of scientists mapping proteins enabling carcinomas to change identity in pancreatic and lung cancers, revealing potential therapy targets.
AIによって生成された画像

科学者らが、カルチノーマがアイデンティティを変えるのを可能にするタンパク質をマッピング

AIによるレポート AIによって生成された画像 事実確認済み

Cold Spring Harbor Laboratoryの研究者らが、特定のカルチノーマが細胞のアイデンティティを変化させ、治療を回避するのを助ける主要なタンパク質とタンパク質複合体を特定した。膵臓がんおよびtuft細胞肺がんとに焦点を当てた2つの新研究が、より精密で選択的な治療の標的となり得る分子構造を強調している。

ドレスデンの研究者らが、がん細胞の死を回避するのに役立つことで知られるタンパク質MCL1が、mTOR経路を通じてそのエネルギー産生も調節することを発見した。この二重の役割は、MCL1を標的とする薬が腫瘍と戦う一方で心臓を傷つける場合がある理由を説明する。チームは、この心毒性を軽減する食事アプローチを開発し、より安全な治療への道を開いた。

AIによるレポート 事実確認済み

カリフォルニア大学サンディエゴ校の研究者らは、特定の癌細胞が標的療法を生き延びるために細胞死関連酵素の低レベル活性化を利用し、治療に耐え、後で腫瘍を再成長させることを報告した。この抵抗機構は新たな遺伝子変異に依存しないため、治療の初期に現れ、腫瘍再発防止のための新たな標的を提供する可能性がある。

MITとスタンフォード大学の研究者らが、がん細胞上の糖類ベースの免疫チェックポイントをブロックする多機能分子AbLecsを開発した。この手法は、免疫細胞が腫瘍をより効果的に標的化できるように免疫療法を強化することを目的としている。細胞とマウスでの初期試験では、抗腫瘍応答を強化する有望な結果が示された。

AIによるレポート 事実確認済み

研究者らは、数千の遺伝子がどのように共同で疾患リスクに影響を与えるかを明らかにするゲノムマッピング技術を開発し、伝統的な遺伝子研究が残したギャップを埋めるのに役立てている。この手法は、グラッドストーン研究所とスタンフォード大学の科学者らが主導したNature論文で説明されており、大規模な細胞実験と集団遺伝学データを組み合わせ、将来の治療法の有望な標的を強調し、血液障害や免疫媒介疾患などの状態に対する理解を深めるものである。

日本の研究者らが、がん細胞が微小な小胞を使って免疫抑制タンパク質PD-L1を拡散させる仕組みを解明し、免疫療法がしばしば失敗する理由を説明した。UBL3というタンパク質がこのプロセスを制御するが、一般的なスタチンがこれを阻害し、治療効果を高める可能性がある。患者サンプルと実験室テストからの知見は、肺がん患者の転帰を改善する簡単な方法を示唆している。

AIによるレポート 事実確認済み

日本の研究者らが、毛髪の白髪化とメラノーマが同じメラノサイト幹細胞から生じ、これらがDNA損傷と局所シグナルに応じて異なる経路を取ると報告。2025年10月6日にNature Cell Biologyオンラインで公開された、東京大学主導の研究は、白髪化を促進する保護的な分化プログラムと、発がん物質がこれを回避してメラノーマを有利にする仕組みを明らかにしている。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否