Scientists in a lab visualizing the MED1 molecular switch enabling breast cancer cell stress resistance, for cancer therapy insights.
Imagen generada por IA

Scientists pinpoint MED1 ‘switch’ that helps breast cancer cells withstand stress

Imagen generada por IA
Verificado por hechos

Researchers at The Rockefeller University have identified a molecular switch in breast cancer cells that helps them survive harsh conditions. The switch involves deacetylation of the MED1 protein, which boosts stress-response gene activity linked to tumor growth and resilience. The work, reported in Nature Chemical Biology, points to potential new targets for cancer therapy.

Cancer cells often flourish in hostile tumor environments, such as regions with low oxygen or high oxidative stress. Seeking to understand how breast cancer cells adapt, a team led by Robert Roeder at The Rockefeller University examined how changes in gene transcription enable tumor cells to cope with these conditions.

The researchers focused on the Mediator complex, a large protein assembly that helps RNA polymerase II (Pol II) transcribe genes. One key subunit, MED1, is required for Pol II-driven transcription in many cell types, including estrogen receptor-positive breast cancer (ER+ BC), one of the most common categories of breast cancer. Earlier work from Roeder’s lab showed that MED1 interacts with estrogen receptors to strongly activate gene expression in ER+ BC, and in some cases this interaction can reduce the effectiveness of cancer drugs, according to Rockefeller University and ScienceDaily summaries of the study.

First author Ran Lin began by asking whether MED1 is modified by acetylation, a chemical change in which an acetyl group is added to a protein and its function can be altered. After confirming that MED1 is acetylated, the team exposed cells to several types of stress, including hypoxia (lack of oxygen), oxidative stress, and heat or thermal stress.

Under these stressful conditions, the enzyme SIRT1 removed acetyl groups from MED1 in a process known as deacetylation. The deacetylated MED1 then associated more efficiently with Pol II, increasing the potential to activate genes that help cells cope with damage and other stressors, the Rockefeller account reports.

To test this mechanism more directly, the researchers engineered a mutant form of MED1 lacking six specific acetylation sites, making it unable to be acetylated. They introduced this mutant protein into ER+ breast cancer cells in which the endogenous MED1 had been removed using CRISPR-based gene editing. In laboratory and animal models, breast cancer cells containing deacetylated or non-acetylatable MED1 formed faster-growing and more stress-resistant tumors than cells with normal MED1, according to the Rockefeller and ScienceDaily reports.

“This previously unknown transcription-level mechanism helps the cancer cells survive stressful conditions, so targeting it could disrupt a key survival mechanism that some cancers rely on,” Lin said in comments released by Rockefeller University and carried by ScienceDaily.

Roeder added that “this molecular switch is mediated by a generic transcription complex normally required for all protein-coding genes,” and that its subunits can be repurposed for functions that allow cancer cells to survive and grow in high-stress environments, according to the same institutional summary.

Lin described the effect as a regulatory switch: “Our work reveals that the acetylation and deacetylation of MED1 act as a regulatory switch that helps cancer cells reprogram transcription in response to stress, supporting both survival and growth,” he said. He noted that in cancer — particularly ER+ breast cancer — this pathway may be intensified to support abnormal growth and survival and could inform future drug development.

Roeder said the MED1 regulatory pathway appears to fit into a broader paradigm in which acetylation controls transcription factors, pointing to earlier work on the tumor-suppressor protein p53 from his lab. He emphasized that understanding such basic mechanisms can reveal pathways that might eventually be leveraged for new therapies.

Taken together, the findings highlight how fundamental research on transcriptional regulation can uncover therapeutic opportunities, especially for ER+ breast cancers and potentially other malignancies that rely on stress-induced gene reprogramming.

Qué dice la gente

Limited discussions on X praise the Rockefeller University discovery of a MED1 protein deacetylation switch enabling breast cancer cells to survive stress, viewing it as a promising new target for cancer therapies. Posts from scientists, news outlets, and enthusiasts highlight the breakthrough without notable skepticism.

Artículos relacionados

Illustration of scientists mapping proteins enabling carcinomas to change identity in pancreatic and lung cancers, revealing potential therapy targets.
Imagen generada por IA

Científicos cartografían proteínas que permiten a los carcinomas cambiar de identidad

Reportado por IA Imagen generada por IA Verificado por hechos

Investigadores del Cold Spring Harbor Laboratory han identificado proteínas clave y complejos proteicos que ayudan a ciertos carcinomas a cambiar su identidad celular y potencialmente evadir el tratamiento. Dos nuevos estudios, centrados en el cáncer de páncreas y el cáncer de pulmón de células en penacho, destacan estructuras moleculares que podrían convertirse en objetivos para terapias más precisas y selectivas.

Investigadores en Dresde han descubierto que la proteína MCL1, conocida por ayudar a las células cancerosas a evadir la muerte, también regula su producción de energía a través de la vía mTOR. Este doble papel explica por qué los fármacos que atacan MCL1 pueden combatir tumores pero a veces dañan el corazón. El equipo ha desarrollado un enfoque dietético para mitigar esta cardiotoxicidad, allanando el camino para terapias más seguras.

Reportado por IA Verificado por hechos

Investigadores de la Universidad de California en San Diego informan que ciertas células cancerosas sobreviven a las terapias dirigidas mediante la activación de bajo nivel de una enzima vinculada a la muerte celular, lo que les permite soportar el tratamiento y regenerar tumores más tarde. Dado que este mecanismo de resistencia no depende de nuevas mutaciones genéticas, aparece temprano en el tratamiento y podría ofrecer un nuevo objetivo para ayudar a prevenir la recaída tumoral.

Investigadores del MIT y la Universidad de Stanford han desarrollado moléculas multifuncionales llamadas AbLecs para bloquear los puntos de control inmunitarios basados en azúcares en las células cancerosas. Este enfoque busca potenciar la inmunoterapia permitiendo que las células inmunitarias apunten mejor a los tumores. Pruebas iniciales en células y ratones muestran resultados prometedores para impulsar respuestas antitumorales.

Reportado por IA Verificado por hechos

Los investigadores han desarrollado una técnica de mapeo genómico que revela cómo miles de genes trabajan juntos para influir en el riesgo de enfermedades, ayudando a cerrar brechas dejadas por estudios genéticos tradicionales. El enfoque, descrito en un artículo de Nature liderado por científicos de los Gladstone Institutes y la Universidad de Stanford, combina experimentos celulares a gran escala con datos de genética de poblaciones para resaltar objetivos prometedores para terapias futuras y profundizar en la comprensión de afecciones como trastornos sanguíneos y enfermedades mediadas por el sistema inmune.

Investigadores japoneses han descubierto cómo las células cancerosas utilizan vesículas diminutas para propagar la proteína supresora inmune PD-L1, explicando por qué la inmunoterapia a menudo falla. Una proteína llamada UBL3 dirige este proceso, pero las estatinas comunes pueden interrumpirlo, potenciando potencialmente la efectividad del tratamiento. Los hallazgos, de muestras de pacientes y pruebas de laboratorio, sugieren una forma sencilla de mejorar los resultados para pacientes de cáncer de pulmón.

Reportado por IA Verificado por hechos

Investigadores japoneses informan que el encanecimiento del cabello y el melanoma pueden surgir de las mismas células madre melanocíticas, que toman caminos diferentes dependiendo del daño en el ADN y las señales locales. Publicado en línea el 6 de octubre de 2025 en Nature Cell Biology, el estudio liderado por la Universidad de Tokio describe un programa de diferenciación protectora que promueve el encanecimiento y cómo los carcinógenos pueden subvertirlo para favorecer el melanoma.

 

 

 

Este sitio web utiliza cookies

Utilizamos cookies para análisis con el fin de mejorar nuestro sitio. Lee nuestra política de privacidad para más información.
Rechazar