Microscopic illustration showing UV rays disrupting YTHDF2 protein in skin cells, causing inflammation and tumor risk.
Gambar dihasilkan oleh AI

Study reveals how sunlight disrupts a key safeguard against skin inflammation and cancer

Gambar dihasilkan oleh AI
Fakta terverifikasi

Researchers at the University of Chicago have shown that ultraviolet radiation can disable a protein that normally restrains inflammation in skin cells, promoting conditions that favor tumor development. The protein, YTHDF2, helps prevent harmful immune responses to sun-induced damage. The findings, published in the journal Nature Communications, suggest new strategies for reducing the risk of UV‑related skin cancer by targeting RNA–protein interactions.

Sunlight is essential for vitamin D production, but prolonged exposure to ultraviolet (UV) rays is a major risk factor for skin cancer. UV radiation damages DNA and generates oxidative stress, which in turn triggers inflammation that can appear as sunburn, with symptoms such as redness and blistering.

According to background data from the American Cancer Society and other public health agencies, millions of skin cancer cases are diagnosed in the United States each year, and a large proportion are linked to UV exposure. However, the specific molecular pathways that connect UV‑induced inflammation to cancer development have remained only partly understood.

In the new study, led by Yu‑Ying He, PhD, a professor of medicine in dermatology at the University of Chicago, scientists investigated how UV‑induced inflammation is controlled at the RNA level. The team focused on YTHDF2, a protein that recognizes RNA molecules carrying N6‑methyladenosine (m6A) modifications and helps regulate their stability and activity.

Using human skin cells and mouse models, the researchers found that UVB exposure reduces YTHDF2 activity by inducing its dephosphorylation and autophagic degradation. When YTHDF2 is lost or depleted, inflammatory responses to UVB become markedly stronger, according to the Nature Communications paper and a University of Chicago Medicine summary.

"When we removed YTHDF2 from skin cells, we saw that UV‑triggered inflammation was much worse," He said in a statement released by UChicago Medicine. "This suggests that the YTHDF2 protein plays a key role in suppressing inflammatory responses."

Further experiments showed that YTHDF2 binds to a non‑coding RNA known as U6, a small nuclear RNA (snRNA) that carries m6A modifications. The study reports that, under UV stress, levels of U6 increase and this RNA can bind to toll‑like receptor 3 (TLR3), an immune sensor that activates inflammatory pathways linked to tumor formation.

The researchers found that these interactions occur within endosomes, cellular compartments not typically associated with U6 snRNA. The team identified SIDT2, a transmembrane protein, as responsible for transporting U6 into endosomes, where both U6 and YTHDF2 are present.

"We spent a lot of time figuring out how these non‑coding RNAs get to the endosome, since that’s not where they usually reside," He explained in the UChicago Medicine article. "For the first time, we showed that a protein called SDT2 transports U6 into the endosome, and YTHDF2 travels with it." The underlying research paper identifies this transporter as SIDT2, a known endosomal membrane protein.

Once in the endosome, YTHDF2 normally promotes decay of m6A‑modified U6 and blocks its ability to activate TLR3. In the absence of YTHDF2—such as after UVB‑induced inhibition of the protein—U6 more readily engages TLR3, driving heightened inflammatory signaling.

In mouse experiments, skin‑specific deletion of Ythdf2 increased UVB‑induced skin inflammation and promoted tumor initiation, supporting a role for YTHDF2 in suppressing UV‑driven skin cancer development.

The research, titled "YTHDF2 regulates self non‑coding RNA metabolism to control inflammation and tumorigenesis," was published in Nature Communications. According to the University of Chicago Medicine, the work was supported by grants from the National Institutes of Health, the University of Chicago Medicine Comprehensive Cancer Center, the ChicAgo Center for Health and EnvironmenT (CACHET), and the University of Chicago Friends of Dermatology Endowment Fund. The authors say the findings open potential avenues for therapies that target RNA–protein interactions regulating inflammation to help prevent or treat UV‑associated skin cancer.

Artikel Terkait

Illustration of bone marrow cross-section showing inflammation promoting mutated stem cells, with stromal cells, T cells, and expansion signals.
Gambar dihasilkan oleh AI

Peradangan mengubah ulang sumsum tulang, memberikan sel punca mutan keunggulan awal

Dilaporkan oleh AI Gambar dihasilkan oleh AI Fakta terverifikasi

Peradangan kronis membentuk ulang ceruk sumsum tulang, mendorong ekspansi sel punca darah mutan yang terlihat dalam hematopoiesis klonal dan mielodisplasia dini. Karya ini, diterbitkan 18 November 2025 di Nature Communications, memetakan lingkaran umpan maju antara sel stromal inflamasi dan sel T responsif interferon serta menunjukkan terapi yang menargetkan mikro lingkungan serta sel mutan.

Peneliti menemukan bahwa produk sampingan vitamin A, asam retinoat all-trans, melemahkan perjuangan sistem imun melawan kanker dan mengurangi efektivitas vaksin tertentu. Dalam studi praklinis, obat baru bernama KyA33 memblokir jalur ini, meningkatkan respons imun dan memperlambat pertumbuhan tumor. Temuan dari dua studi ini menjelaskan paradoks lama tentang peran vitamin A dalam kanker.

Dilaporkan oleh AI

Protein dari tardigrade, yang dikenal karena ketangguhannya yang ekstrem, menawarkan perlindungan potensial terhadap radiasi kosmik bagi astronot tetapi datang dengan biaya seluler yang signifikan, menurut penelitian baru. Ilmuwan di University of British Columbia menemukan bahwa meskipun dsup melindungi DNA dari kerusakan, itu dapat merusak pertumbuhan sel dan bahkan menyebabkan kematian pada tingkat yang lebih tinggi. Temuan ini mempersulit harapan penggunaan protein tersebut dalam misi luar angkasa.

Peneliti di Universitas Utrecht telah merancang sensor fluoresen yang memungkinkan ilmuwan mengamati kerusakan dan perbaikan DNA secara real time di dalam sel hidup dan bahkan dalam organisme utuh. Dibangun dari komponen protein seluler alami, alat ini memberikan pandangan kontinu tentang dinamika perbaikan sambil meminimalkan gangguan terhadap mesin sel itu sendiri. Penelitian ini, yang dilaporkan di Nature Communications, dapat membantu penelitian kanker, pengujian obat, dan studi penuaan.

Dilaporkan oleh AI

Peneliti di Universitas Ben-Gurion telah mengidentifikasi protein SIRT6 sebagai pengatur kunci metabolisme triptofan di otak, menjelaskan bagaimana kehilangannya menyebabkan produk sampingan toksik pada otak yang menua dan sakit. Studi mengungkapkan bahwa penurunan SIRT6 mengalihkan triptofan ke jalur berbahaya, mengurangi neurotransmiter pelindung seperti serotonin dan melatonin. Memblokir enzim terkait menunjukkan potensi untuk membalikkan kerusakan otak pada model.

Para peneliti telah mengembangkan teknik pemetaan genomik yang mengungkap bagaimana ribuan gen bekerja sama untuk memengaruhi risiko penyakit, membantu menjembatani kesenjangan yang ditinggalkan oleh studi genetik tradisional. Pendekatan ini, yang dijelaskan dalam makalah Nature yang dipimpin oleh ilmuwan dari Gladstone Institutes dan Universitas Stanford, menggabungkan eksperimen sel skala besar dengan data genetik populasi untuk menyoroti target menjanjikan untuk terapi masa depan dan memperdalam pemahaman tentang kondisi seperti gangguan darah dan penyakit yang dimediasi imun.

Dilaporkan oleh AI Fakta terverifikasi

Peneliti Weill Cornell Medicine melaporkan bahwa radikal bebas yang dihasilkan di situs mitokondria spesifik pada astrosit tampaknya mempromosikan neuroinflamasi dan cedera neuronal pada model tikus. Memblokir radikal tersebut dengan senyawa yang disesuaikan menghambat inflamasi dan melindungi neuron. Temuan tersebut, yang diterbitkan pada 4 November 2025 di Nature Metabolism, menunjukkan pendekatan bertarget yang dapat menginformasikan terapi untuk penyakit Alzheimer dan demensia frontotemporal.

 

 

 

Situs web ini menggunakan cookie

Kami menggunakan cookie untuk analisis guna meningkatkan situs kami. Baca kebijakan privasi kami untuk informasi lebih lanjut.
Tolak