Study uncovers water storage in early Earth's mantle

A new study suggests that Earth's early molten phase preserved water deep in its mantle through bridgmanite, preventing loss to space. Led by researchers at the Chinese Academy of Sciences, the findings explain how this hidden reservoir contributed to the planet's evolution into a water-rich world. Published in Science, the research challenges previous views on the mantle's dryness.

Earth's formative years, about 4.6 billion years ago, were marked by intense cosmic impacts that turned the planet into a molten inferno. A global magma ocean dominated the surface, with temperatures too extreme for liquid water to exist, raising questions about how today's oceans, covering 70% of the surface, came to be.

A team led by Prof. Zhixue Du from the Guangzhou Institute of Geochemistry at the Chinese Academy of Sciences has proposed a solution. Their research, detailed in the December 11, 2025, issue of Science, demonstrates that bridgmanite—the predominant mineral in the lower mantle—can store substantial water under high-heat conditions. Earlier experiments, limited to lower temperatures, underestimated this capacity, but the new work used advanced tools to simulate depths over 660 kilometers, reaching temperatures up to 4,100 °C.

Employing a diamond anvil cell with laser heating, along with techniques like cryogenic three-dimensional electron diffraction, NanoSIMS, and atom probe tomography, the scientists confirmed water's structural integration into bridgmanite. The mineral's water partition coefficient rises sharply with temperature, implying that during the magma ocean's cooling, bridgmanite trapped far more water than thought—potentially 0.08 to 1 times the volume of modern oceans.

This subterranean vault influenced Earth's geology profoundly. The stored water reduced mantle rock viscosity, facilitating convection and plate tectonics. Over eons, volcanic processes released it, aiding the creation of the atmosphere and surface oceans. As co-author Wenhua Lu and colleagues note in their paper 'Substantial water retained early in Earth’s deep mantle,' this mechanism was crucial for transforming a fiery proto-planet into a habitable one.

The discovery reframes the lower mantle not as arid, but as a vital water repository, with implications for understanding planetary habitability elsewhere.

関連記事

研究者らが南大西洋海底の下に広大な溶岩残骸の堆積物を見つけ、数千万年にわたり大量の二酸化炭素を捕捉していることが判明した。これらの火口山由来のブリーチャ形成物は、典型的な海洋地殻サンプルよりもはるかに多くのCO2を貯蔵している。この発見は、地球の長期炭素循環におけるこれまで認識されていなかったメカニズムを強調する。

AIによるレポート

研究者らは火星の古代海岸線を地図化し、数十億年前に存在した地球の北極海に匹敵する広大な海洋を明らかにした。軌道上の宇宙船のデータを使用して、チームは惑星最大の峡谷に長期間存在した表面水を示唆する地質学的特徴を特定した。この発見は、火星の水の過去に対する最強の証拠を提供する。

数十億年にわたり、地球の磁場がその大気から小さな粒子を月へ導いてきたという新研究。 このプロセスはアポロミッションのサンプルに含まれる過剰な揮発性物質を説明し、月の表面が地球の大気史を保存していることを示唆する。 これらの発見は、月上の潜在資源を強調することで将来の月探査を支援する可能性がある。

AIによるレポート

新しい研究によると、グリーンランド北部の著名な氷ドームが7000年前の温暖期に完全に溶けた。科学者らは、人間活動による気候変動により、2100年までに同様の気温が戻る可能性を警告し、氷床の脆弱性を強調している。この発見は、将来の海面上昇の可能性に関する重要な洞察を提供する。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否