Study uncovers water storage in early Earth's mantle

A new study suggests that Earth's early molten phase preserved water deep in its mantle through bridgmanite, preventing loss to space. Led by researchers at the Chinese Academy of Sciences, the findings explain how this hidden reservoir contributed to the planet's evolution into a water-rich world. Published in Science, the research challenges previous views on the mantle's dryness.

Earth's formative years, about 4.6 billion years ago, were marked by intense cosmic impacts that turned the planet into a molten inferno. A global magma ocean dominated the surface, with temperatures too extreme for liquid water to exist, raising questions about how today's oceans, covering 70% of the surface, came to be.

A team led by Prof. Zhixue Du from the Guangzhou Institute of Geochemistry at the Chinese Academy of Sciences has proposed a solution. Their research, detailed in the December 11, 2025, issue of Science, demonstrates that bridgmanite—the predominant mineral in the lower mantle—can store substantial water under high-heat conditions. Earlier experiments, limited to lower temperatures, underestimated this capacity, but the new work used advanced tools to simulate depths over 660 kilometers, reaching temperatures up to 4,100 °C.

Employing a diamond anvil cell with laser heating, along with techniques like cryogenic three-dimensional electron diffraction, NanoSIMS, and atom probe tomography, the scientists confirmed water's structural integration into bridgmanite. The mineral's water partition coefficient rises sharply with temperature, implying that during the magma ocean's cooling, bridgmanite trapped far more water than thought—potentially 0.08 to 1 times the volume of modern oceans.

This subterranean vault influenced Earth's geology profoundly. The stored water reduced mantle rock viscosity, facilitating convection and plate tectonics. Over eons, volcanic processes released it, aiding the creation of the atmosphere and surface oceans. As co-author Wenhua Lu and colleagues note in their paper 'Substantial water retained early in Earth’s deep mantle,' this mechanism was crucial for transforming a fiery proto-planet into a habitable one.

The discovery reframes the lower mantle not as arid, but as a vital water repository, with implications for understanding planetary habitability elsewhere.

Relaterade artiklar

Forskare har identifierat stora lager av lavagrus under Sydatlanten som fångar betydande mängder koldioxid under tiotals miljoner år. Dessa brecciebildningar, formade av eroderade undervattensberg, lagrar långt mer CO2 än typiska havskrustersprover. Upptäckten belyser en tidigare oerkänd mekanism i jordens långsiktiga koldioxidcykel.

Rapporterad av AI

Forskare har kartlagt en uråldrig kustlinje på Mars och avslöjat ett vidsträckt hav jämförbart med jordens Arktiska hav som existerade för miljarder år sedan. Med data från rymdfarkoster i omloppsbana identifierade teamet geologiska drag som tyder på långvarigt ytvatten i planetens största kanjon. Detta fynd ger hittills det starkaste beviset för Mars vattenrika förflutna.

I miljarder år har jordens magnetfält styrt små partiklar från dess atmosfär till månen, enligt ny forskning. Denna process förklarar överskottet av flyktiga ämnen i Apollo-prover och tyder på att månens yta bevarar jordens atmosfäriska historia. Resultaten kan underlätta framtida månutforskning genom att belysa potentiella resurser på månen.

Rapporterad av AI

En framträdande isdome i norra Grönland smälte helt för cirka 7000 år sedan under en varmare period, enligt ny forskning. Forskare varnar för att liknande temperaturer kan återvända senast 2100 på grund av människoskapad klimatförändring, vilket belyser issköldens sårbarhet. Upptäckten ger viktiga insikter i potentiell framtida havsnivåhöjning.

 

 

 

Denna webbplats använder cookies

Vi använder cookies för analys för att förbättra vår webbplats. Läs vår integritetspolicy för mer information.
Avböj