Realistic depiction of ferroptosis in child neurons due to GPX4 mutation, showing lipid peroxide damage and neurodegeneration akin to Alzheimer's.
Gambar dihasilkan oleh AI

Single GPX4 mutation exposes ferroptosis as driver of early childhood dementia

Gambar dihasilkan oleh AI
Fakta terverifikasi

Researchers in Germany have identified a rare mutation in the GPX4 enzyme that disables its protective role in neurons, allowing toxic lipid peroxides to damage cell membranes and trigger ferroptotic cell death. Studies in patient-derived cells and mice show a pattern of neurodegeneration that resembles changes seen in Alzheimer’s disease and other dementias.

A research team led by Prof. Marcus Conrad at Helmholtz Munich and the Technical University of Munich has described how a rare genetic mutation in the selenoenzyme glutathione peroxidase 4 (GPX4) can drive neuronal loss in a severe early childhood dementia.

According to Helmholtz Munich and partner institutions, GPX4 normally shields neurons from ferroptosis, a form of regulated cell death, by inserting a short protein loop – likened to a "fin" – into the inner side of the neuronal cell membrane. This fin-like loop enables the enzyme to detoxify lipid peroxides, reactive molecules that would otherwise damage the membrane and initiate ferroptosis.

The investigation originated with three children in the United States who suffer from an extremely rare form of early childhood dementia, all of whom carry the same R152H point mutation in the GPX4 gene. Using cells from one affected child, the researchers reprogrammed them into a stem‑cell‑like state and then differentiated them into cortical neurons and three‑dimensional brain‑like structures known as brain organoids, to study how the mutation alters GPX4 function.

"GPX4 is a bit like a surfboard," Conrad said, in comments released through Helmholtz Munich and TUM. "With its fin immersed into the cell membrane, it rides along the inner surface and swiftly detoxifies lipid peroxides as it goes." In children with the R152H mutation, this fin-like loop is reshaped. The altered enzyme can no longer insert properly into the membrane, leaving lipid peroxides to accumulate. This causes membrane damage, triggers ferroptosis and ultimately leads to neuron loss.

To examine the effects in the whole organism, the team introduced the R152H variant into a mouse model, altering GPX4 in defined populations of nerve cells. The mice gradually developed marked motor impairments, significant neuron loss in the cerebral cortex and cerebellum, and pronounced neuroinflammatory responses. Researchers report that these features closely matched observations in the affected children and resembled profiles seen in neurodegenerative diseases.

Proteomic analyses in the experimental models revealed shifts in protein levels that overlap with patterns described in Alzheimer’s disease and related disorders, suggesting that ferroptotic stress may contribute more broadly to common dementias. The authors of the Cell paper interpret their data as evidence that ferroptosis can act as a driving force behind neuronal death, rather than merely a byproduct of neurodegeneration.

The study, published in Cell under the title "A fin-loop-like structure in GPX4 underlies neuroprotection from ferroptosis," emphasizes an alternative starting point for neurodegenerative cascades: initial damage to neuronal membranes caused by unchecked lipid peroxidation, rather than the accumulation of protein aggregates alone.

Early-stage experiments using ferroptosis inhibitors in cell cultures and in mouse models slowed neuronal death, providing proof of principle that blocking this pathway might be protective. However, the researchers stress that these findings remain at the level of basic research and are far from clinical application. Co‑author Dr. Tobias Seibt and colleagues caution that while targeting ferroptosis represents a promising avenue, further studies are needed before any potential therapies can be tested in patients.

The work reflects more than a decade of international collaboration, bringing together expertise in human genetics, structural biology, proteomics and neuroscience across multiple centers, including Helmholtz Munich, the Technical University of Munich and clinical partners.

Apa yang dikatakan orang

Limited discussions on X focus on the GPX4 mutation causing ferroptosis-driven neurodegeneration in early childhood dementia, with patterns resembling Alzheimer's. Scientific and biotech accounts share neutrally, highlighting the mutation's mechanism, mouse model results, and potential ferroptosis inhibitors to slow cell death. No strong positive, negative, or skeptical sentiments observed.

Artikel Terkait

Realistic illustration of researchers in a lab studying reduced lung tumors in mice via FSP1 inhibition, with charts and microscope views highlighting the breakthrough.
Gambar dihasilkan oleh AI

Memblokir FSP1 memicu ferroptosis, membatasi tumor paru pada tikus

Dilaporkan oleh AI Gambar dihasilkan oleh AI Fakta terverifikasi

Peneliti di NYU Langone Health melaporkan bahwa menghambat protein FSP1 menginduksi ferroptosis dan secara signifikan memperlambat adenocarcinoma paru pada model tikus. Studi tersebut, yang diterbitkan secara online di Nature pada 5 November 2025, menemukan pengurangan pertumbuhan tumor hingga 80% dalam uji praklinis, menurut institusi tersebut.

Peneliti Weill Cornell Medicine melaporkan bahwa radikal bebas yang dihasilkan di situs mitokondria spesifik pada astrosit tampaknya mempromosikan neuroinflamasi dan cedera neuronal pada model tikus. Memblokir radikal tersebut dengan senyawa yang disesuaikan menghambat inflamasi dan melindungi neuron. Temuan tersebut, yang diterbitkan pada 4 November 2025 di Nature Metabolism, menunjukkan pendekatan bertarget yang dapat menginformasikan terapi untuk penyakit Alzheimer dan demensia frontotemporal.

Dilaporkan oleh AI Fakta terverifikasi

Para ilmuwan telah mengidentifikasi modifikator genetik yang membantu sel mengatasi kehilangan frataxin, protein inti dari ataxia Friedreich. Dengan menurunkan aktivitas gen FDX2, eksperimen pada cacing, sel manusia, dan tikus menunjukkan bahwa proses produksi energi kunci dapat dipulihkan, menunjukkan strategi pengobatan baru potensial.

Para peneliti telah mengungkap bagaimana beta amiloid dan peradangan mungkin sama-sama memicu pemangkasan sinapsis pada penyakit Alzheimer melalui reseptor umum, berpotensi menawarkan jalur pengobatan baru. Temuan ini menantang gagasan bahwa neuron pasif dalam proses ini, menunjukkan bahwa mereka secara aktif menghapus koneksi mereka sendiri. Dipimpin oleh Carla Shatz dari Stanford, studi ini menyarankan penargetan reseptor ini bisa mempertahankan ingatan lebih efektif daripada obat-obatan berfokus amiloid saat ini.

Dilaporkan oleh AI Fakta terverifikasi

Para ilmuwan di University of California, Riverside telah mengidentifikasi bentuk kerusakan DNA mitokondria yang sebelumnya tidak diketahui yang dikenal sebagai adduk DNA glutationilasi, yang menumpuk pada tingkat yang jauh lebih tinggi di DNA mitokondria daripada di DNA nuklir. Lesi tersebut mengganggu produksi energi dan mengaktifkan jalur respons stres, dan para peneliti mengatakan bahwa penelitian ini dapat membantu menjelaskan bagaimana DNA mitokondria yang rusak berkontribusi pada peradangan dan penyakit termasuk diabetes, kanker, dan neurodegenerasi.

Peneliti telah menunjukkan bagaimana mutasi pada gen aktin kunci dapat menyebabkan otak yang secara tidak normal kecil pada anak-anak dengan sindrom Baraitser-Winter. Menggunakan organoid otak manusia yang ditumbuhkan di laboratorium, tim menemukan bahwa mutasi ini mengubah orientasi pembelahan sel progenitor otak awal dan mengurangi populasi sel punca penting, memberikan mekanisme seluler untuk mikrocefalia terkait sindrom.

Dilaporkan oleh AI

Para ilmuwan di Universitas Northwestern telah mengidentifikasi subtipe toksik oligomer beta amiloid yang memicu perubahan awal Alzheimer di otak. Obat eksperimental mereka, NU-9, mengurangi kerusakan dan peradangan ini pada tikus pra-simptomatik, menunjukkan potensi untuk mencegah penyakit sebelum gejala muncul. Temuan ini menyoroti strategi baru untuk intervensi dini.

 

 

 

Situs web ini menggunakan cookie

Kami menggunakan cookie untuk analisis guna meningkatkan situs kami. Baca kebijakan privasi kami untuk informasi lebih lanjut.
Tolak