Realistic depiction of ferroptosis in child neurons due to GPX4 mutation, showing lipid peroxide damage and neurodegeneration akin to Alzheimer's.
Image générée par IA

Single GPX4 mutation exposes ferroptosis as driver of early childhood dementia

Image générée par IA
Vérifié par des faits

Researchers in Germany have identified a rare mutation in the GPX4 enzyme that disables its protective role in neurons, allowing toxic lipid peroxides to damage cell membranes and trigger ferroptotic cell death. Studies in patient-derived cells and mice show a pattern of neurodegeneration that resembles changes seen in Alzheimer’s disease and other dementias.

A research team led by Prof. Marcus Conrad at Helmholtz Munich and the Technical University of Munich has described how a rare genetic mutation in the selenoenzyme glutathione peroxidase 4 (GPX4) can drive neuronal loss in a severe early childhood dementia.

According to Helmholtz Munich and partner institutions, GPX4 normally shields neurons from ferroptosis, a form of regulated cell death, by inserting a short protein loop – likened to a "fin" – into the inner side of the neuronal cell membrane. This fin-like loop enables the enzyme to detoxify lipid peroxides, reactive molecules that would otherwise damage the membrane and initiate ferroptosis.

The investigation originated with three children in the United States who suffer from an extremely rare form of early childhood dementia, all of whom carry the same R152H point mutation in the GPX4 gene. Using cells from one affected child, the researchers reprogrammed them into a stem‑cell‑like state and then differentiated them into cortical neurons and three‑dimensional brain‑like structures known as brain organoids, to study how the mutation alters GPX4 function.

"GPX4 is a bit like a surfboard," Conrad said, in comments released through Helmholtz Munich and TUM. "With its fin immersed into the cell membrane, it rides along the inner surface and swiftly detoxifies lipid peroxides as it goes." In children with the R152H mutation, this fin-like loop is reshaped. The altered enzyme can no longer insert properly into the membrane, leaving lipid peroxides to accumulate. This causes membrane damage, triggers ferroptosis and ultimately leads to neuron loss.

To examine the effects in the whole organism, the team introduced the R152H variant into a mouse model, altering GPX4 in defined populations of nerve cells. The mice gradually developed marked motor impairments, significant neuron loss in the cerebral cortex and cerebellum, and pronounced neuroinflammatory responses. Researchers report that these features closely matched observations in the affected children and resembled profiles seen in neurodegenerative diseases.

Proteomic analyses in the experimental models revealed shifts in protein levels that overlap with patterns described in Alzheimer’s disease and related disorders, suggesting that ferroptotic stress may contribute more broadly to common dementias. The authors of the Cell paper interpret their data as evidence that ferroptosis can act as a driving force behind neuronal death, rather than merely a byproduct of neurodegeneration.

The study, published in Cell under the title "A fin-loop-like structure in GPX4 underlies neuroprotection from ferroptosis," emphasizes an alternative starting point for neurodegenerative cascades: initial damage to neuronal membranes caused by unchecked lipid peroxidation, rather than the accumulation of protein aggregates alone.

Early-stage experiments using ferroptosis inhibitors in cell cultures and in mouse models slowed neuronal death, providing proof of principle that blocking this pathway might be protective. However, the researchers stress that these findings remain at the level of basic research and are far from clinical application. Co‑author Dr. Tobias Seibt and colleagues caution that while targeting ferroptosis represents a promising avenue, further studies are needed before any potential therapies can be tested in patients.

The work reflects more than a decade of international collaboration, bringing together expertise in human genetics, structural biology, proteomics and neuroscience across multiple centers, including Helmholtz Munich, the Technical University of Munich and clinical partners.

Ce que les gens disent

Limited discussions on X focus on the GPX4 mutation causing ferroptosis-driven neurodegeneration in early childhood dementia, with patterns resembling Alzheimer's. Scientific and biotech accounts share neutrally, highlighting the mutation's mechanism, mouse model results, and potential ferroptosis inhibitors to slow cell death. No strong positive, negative, or skeptical sentiments observed.

Articles connexes

Realistic illustration of researchers in a lab studying reduced lung tumors in mice via FSP1 inhibition, with charts and microscope views highlighting the breakthrough.
Image générée par IA

Bloquer FSP1 déclenche la ferroptose, freinant les tumeurs pulmonaires chez les souris

Rapporté par l'IA Image générée par IA Vérifié par des faits

Des chercheurs de NYU Langone Health rapportent que l'inhibition de la protéine FSP1 induit la ferroptose et ralentit considérablement l'adénocarcinome pulmonaire dans des modèles murins. L'étude, publiée en ligne dans Nature le 5 novembre 2025, a révélé des réductions de la croissance tumorale allant jusqu'à 80 % dans des tests précliniques, selon l'institution.

Des chercheurs de Weill Cornell Medicine rapportent que les radicaux libres générés à un site mitochondrial spécifique dans les astrocytes semblent promouvoir la neuroinflammation et les lésions neuronales dans des modèles de souris. Bloquer ces radicaux avec des composés adaptés a réduit l'inflammation et protégé les neurones. Les résultats, publiés le 4 novembre 2025 dans Nature Metabolism, indiquent une approche ciblée qui pourrait orienter les thérapies pour la maladie d'Alzheimer et la démence frontotemporale.

Rapporté par l'IA Vérifié par des faits

Des scientifiques ont identifié un modificateur génétique qui aide les cellules à faire face à la perte de la frataxine, la protéine au cœur de l’ataxie de Friedreich. En réduisant l’activité du gène FDX2, des expériences sur des vers, des cellules humaines et des souris ont montré que des processus clés de production d’énergie peuvent être restaurés, indiquant une potentielle nouvelle stratégie de traitement.

Les chercheurs ont découvert comment la bêta-amyloïde et l'inflammation peuvent toutes deux déclencher l'élagage synaptique dans la maladie d'Alzheimer via un récepteur commun, ouvrant potentiellement de nouvelles voies thérapeutiques. Ces résultats remettent en question l'idée que les neurones sont passifs dans ce processus, montrant qu'ils effacent activement leurs propres connexions. Menée par Carla Shatz de Stanford, l'étude suggère que cibler ce récepteur pourrait préserver la mémoire plus efficacement que les médicaments actuels axés sur l'amyloïde.

Rapporté par l'IA Vérifié par des faits

Des scientifiques de l'University of California, Riverside ont identifié une forme auparavant inconnue de dommage à l'ADN mitochondrial connue sous le nom d'adduits d'ADN glutathionylé, qui s'accumulent à des niveaux beaucoup plus élevés dans l'ADN mitochondrial que dans l'ADN nucléaire. Ces lésions perturbent la production d'énergie et activent les voies de réponse au stress, et les chercheurs estiment que ce travail pourrait aider à expliquer comment l'ADN mitochondrial endommagé contribue à l'inflammation et à des maladies telles que le diabète, le cancer et la neurodegenerescence.

Des chercheurs ont montré comment des mutations dans des gènes clés d'actine peuvent entraîner des cerveaux anormalement petits chez les enfants atteints du syndrome de Baraitser-Winter. À l'aide d'organoides cérébraux humains cultivés en laboratoire, l'équipe a constaté que ces mutations modifient l'orientation des divisions des cellules progénitrices cérébrales précoces et épuisent des populations cruciales de cellules souches, fournissant un mécanisme cellulaire pour la microcéphalie associée au syndrome.

Rapporté par l'IA

Des scientifiques de l'université Northwestern ont identifié un sous-type toxique d'oligomères de bêta-amyloïde qui déclenche les changements précoces de la maladie d'Alzheimer dans le cerveau. Leur médicament expérimental, NU-9, a réduit ces lésions et cette inflammation chez des souris pré-symptomatiques, suggérant un potentiel pour prévenir la maladie avant l'apparition des symptômes. Ces résultats mettent en lumière une nouvelle stratégie d'intervention précoce.

 

 

 

Ce site utilise des cookies

Nous utilisons des cookies pour l'analyse afin d'améliorer notre site. Lisez notre politique de confidentialité pour plus d'informations.
Refuser