Realistic illustration of mouse gut microbiome metabolites traveling to liver, impacting energy and insulin for obesity-diabetes research.
AIによって生成された画像

ハーバード主導の研究、腸内代謝物が肥満と糖尿病リスクに影響する可能性をマッピング

AIによって生成された画像
事実確認済み

ハーバード大学とブラジルの研究者らが、腸内細菌によって生成され、門脈を通って肝臓に運ばれ、マウスのエネルギー利用とインスリン感受性に影響を与える代謝物を特定した。この発見はCell Metabolismに掲載され、腸-肝コミュニケーションを標的とした肥満や2型糖尿病の予防・治療の新たな戦略を示唆している。([sciencedaily.com](https://www.sciencedaily.com/releases/2025/12/251214100926.htm?utm_source=openai))

米国ハーバード大学で行われ、ブラジルのサンパウロ研究財団(FAPESP)が支援した研究プロジェクトにより、腸内マイクロバイオーム由来の代謝物群が腸から肝臓へ、そして全身循環へ移動し、マウスの主要な代謝経路とインスリン感受性に影響を与えることが特定された。この研究はCell Metabolismに報告され、肝門脈血(腸から肝臓へ直接血液を運ぶ)と全身循環の末梢血を分析した。(sciencedaily.com)

肥満耐性のある健康なC57BL/6Jマウスでは、門脈血で111の代謝物が、末梢血で74の代謝物が濃縮されていることが検出された。肥満と2型糖尿病に遺伝的に感受性の高いマウスに高脂肪ハイパー脂質血症食を与えると、肝門脈で濃縮された代謝物の数は111から48に減少しており、食事は腸由来分子の肝臓到達プロファイルを強く変化させることを示した。代謝症候群に自然耐性のある系統(129S1/129S6)との比較では、遺伝的背景も門脈循環に現れる代謝物を形成することがわかった。(sciencedaily.com)

「肝門脈は腸からの血液の大部分を肝臓に排水します。したがって、腸内マイクロバイオームの産物が最初に到達する場所です。肝臓では、それらは結合、変換、または除去され、全身循環に入ります」と、研究の第一著者でブラジルサンパウロ大学リベイラン・プレト体育学部(EEFERP-USP)のポスドク研究員であるVitor Rosetto Muñoz氏はFAPESPが報じたコメントで述べた。彼はハーバード医学校Joslin糖尿病センターでのインターンシップでC. Ronald Kahn氏の指導の下、この研究を行った。(sciencedaily.com)

マイクロバイオームとこれらの循環化合物間の因果関係を探るため、研究者らは肥満・糖尿病感受性マウスに抗生物質バンコマイシンを投与し、腸内細菌を選択的に撹乱した。この介入によりマイクロバイオームが再構築され、門脈血と末梢血の両方で代謝物のバランスが変化し、三塩基性カルボン酸回路(クレブス回路)関連の代謝物であるメサコナートが増加した。(sciencedaily.com)

追跡実験では、単離肝細胞(肝細胞)をメサコナートおよび関連異性体であるイタコナートとシトラコナートに曝露した。Cell Metabolism論文によると、これらの処理はインスリンシグナルを改善し、糖新生、脂肪酸酸化、脂新生に関わる遺伝子発現を変え、これらは代謝健康の中心プロセスである。マウスモデルでは、これらの代謝物の調整がインスリン抵抗性の変化と関連した。(pubmed.ncbi.nlm.nih.gov)

「これは、環境と宿主の遺伝子が腸内マイクロバイオームと複雑に相互作用することを示しています。これらの相互作用により、肝臓へ、そして末梢循環へ送られる代謝物の組み合わせが異なります。これらの代謝物は、肥満、糖尿病、代謝症候群を引き起こす状態を媒介する重要な役割を果たす可能性が高いです」とMuñoz氏はFAPESPと提携メディアの声明で述べた。(sciencedaily.com)

この研究は、肥満、2型糖尿病、グルコース不耐性、インスリン抵抗性を持つ人々や動物が代謝的に健康な個人と比較して独特の腸内マイクロバイオームを持つという増大する証拠に加わるが、鍵となる微生物産物の特定が困難だった。門脈血特異的に濃縮された代謝物に焦点を当てることで、どの微生物分子が最初に肝臓に到達し、代謝疾患を駆動または保護するかをより良く理解できると著者らは主張する。(sciencedaily.com)

研究者らは今、個々の代謝物を詳細に特徴づけ、腸内微生物による生成と宿主による処理をマッピングすることを目指す。将来的に、門脈濃縮代謝物でインスリンシグナルや肝脂質処理を改善するものを特定すれば、マイクロバイオームまたは代謝物ベースの新たな療法が肥満、インスリン抵抗性、2型糖尿病の予防・管理に役立つ可能性がある。ただし、現在の知見はマウスモデルに基づき、専門家はヒトでの同メカニズムと臨床応用のためのさらなる研究が必要と指摘する。(sciencedaily.com)

関連記事

Illustration of gut microbes producing TMA to inhibit inflammation and improve insulin action, contrasting high-fat diet harms with therapeutic potential.
AIによって生成された画像

Gut microbe molecule TMA may help curb inflammation and improve insulin control

AIによるレポート AIによって生成された画像 事実確認済み

An international team of researchers has identified trimethylamine (TMA), a gut microbe metabolite produced from dietary nutrients such as choline, as a compound that inhibits the immune-signalling protein IRAK4, dampening inflammation and improving insulin action in experimental models. The discovery, reported in Nature Metabolism, suggests a potential new way to counter some of the harmful metabolic effects of high-fat diets and opens avenues for future type 2 diabetes therapies, a disease affecting more than 500 million people worldwide.

研究者らは、肥満者の口腔マイクロバイオームに独自のシグネチャーを発見し、早期発見と予防戦略の可能性を提供するかもしれない。エミラティ成人からの唾液サンプルに基づくこの発見は、代謝機能障害に関連する細菌と代謝経路の違いを強調している。しかし、科学者らはこの関係の因果関係は依然として不明であると警告している。

AIによるレポート

新たな研究で、化学療法による腸管内壁の損傷が予期せずマイクロバイオタを再構築し、がんの広がりに対する免疫防御を強化する化合物を作り出すことが明らかになった。このプロセスは免疫抑制細胞を減らし、特に肝臓での転移耐性を高める。患者データでは、この化合物の高レベルが大腸がん症例の生存率向上と関連している。

筑波大学の研究者らは、血液中で検出される代謝センサータンパク質 CtBP2 が、人間の年齢と健康状態に追従することを報告—加齢とともに低下し、長寿家族のメンバーでは高く保たれ、進行した糖尿病合併症を持つ人では低下する。

AIによるレポート 事実確認済み

Researchers at Karolinska Institutet and Stockholm University have developed an experimental oral drug that boosts metabolism in skeletal muscle, improving blood sugar control and fat burning in early studies without reducing appetite or muscle mass. Unlike GLP-1-based drugs such as Ozempic, the candidate acts directly on muscle tissue and has shown good tolerability in an initial clinical trial, according to the study authors.

研究者らは、母マウスが摂取する一般的な食品エマルジョン剤が子孫の腸内マイクロバイオームを生初期から乱し、後年の炎症、腸障害、肥満のリスクを高めることを発見した。Institut PasteurとInsermで行われたこの研究は、直接曝露なしでの世代間健康影響の可能性を強調している。知見はNature Communicationsに掲載された。

AIによるレポート 事実確認済み

コロラド大学アンスシュッツの研究者らは、アルコールがフルクトースを生成する代謝経路を活性化し、それがマウスの飲酒行動と肝障害を促進することを報告した。酵素キトヘキソキナーゼ(KHK)がこのプロセスを駆動する;KHKの阻害はアルコール消費を減少させ、動物モデルで肝損傷から保護した。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否