Martin Morgenstern: genetic editing is the future of medicine

Health economics specialist Martin Morgenstern stated in an interview that genetic editing will transform medical treatments in the coming decades. According to him, technologies like CRISPR will allow altering specific genes to combat conditions like high cholesterol. This approach promises to be more precise than traditional medications, though it carries inherent risks.

In an interview with Canal E, Martin Morgenstern, an expert in health economics, highlighted the revolutionary potential of genetic editing in medicine. He explained that this technology, particularly CRISPR, will open new pathways for managing chronic conditions by modifying specific genes and altering biological processes previously considered inevitable.

A recent example comes from the Cleveland Cardiovascular Institute, where scientists found that the natural inactivation of the ANGPTL3 gene prevents the development of high cholesterol and triglyceride levels throughout life. By reproducing this mutation through genetic editing, researchers achieved an immediate 50% reduction in cholesterol levels. Morgenstern noted that, unlike current treatments such as statins, which cause adverse effects and require chronic use, genetic editing provides more precise interventions with less reliance on ongoing drugs.

"The future of medicine is genetic editing; magic pills cease to be the destiny," emphasized the specialist. He also mentioned successful cases of terminal cancer patients who completely eliminated the disease through experimental genetic editing therapies. However, he warned of the risks of unforeseen effects if not performed with precision.

Morgenstern addressed tensions between public research and the pharmaceutical industry, which prioritizes patentable compounds over personalized genetic innovations. He highlighted ethical dilemmas in patenting biological elements, such as human genes, and urged countries to invest in academic science to distinguish real advances from marketing.

関連記事

Illustration of CRISPR epigenome editing tool removing red methyl tags from a holographic DNA model to activate fetal globin genes, with sickle cell blood cells normalizing, in a modern research lab.
AIによって生成された画像

CRISPRベースのエピゲノム編集がメチルタグを除去して遺伝子をオンにし、DNAを切断せずにスイッチ

AIによるレポート AIによって生成された画像 事実確認済み

UNSWシドニーとセント・ジュード小児研究病院の研究者らが、CRISPR由来の「エピゲノム編集」アプローチを報告し、DNAを切断する代わりにDNAメチル化マークを除去して遺伝子をオンにする。在細胞実験で、プロモーターのメチル化が胎児グロビン遺伝子を直接的かつ可逆的にサイレンシングできることを示し、メチル化が遺伝子オフの原因か単なる相関かをめぐる長年の議論を解決する知見だと述べている。この研究は、DNA切断なしで胎児ヘモグロビンを再活性化し、鎌状赤血球症に対するより安全な治療への道筋を示唆する。

研究者らは、数千の遺伝子がどのように共同で疾患リスクに影響を与えるかを明らかにするゲノムマッピング技術を開発し、伝統的な遺伝子研究が残したギャップを埋めるのに役立てている。この手法は、グラッドストーン研究所とスタンフォード大学の科学者らが主導したNature論文で説明されており、大規模な細胞実験と集団遺伝学データを組み合わせ、将来の治療法の有望な標的を強調し、血液障害や免疫媒介疾患などの状態に対する理解を深めるものである。

AIによるレポート

世界初の遺伝子編集ベビーを作成したとして中国で服役した科学者He Jiankuiは、今後アルツハイマー病対策として同様の研究を進める意向だ。彼はシリコンバレーの分野での取り組みを「ナチスの優生学実験」と批判している。この動きはバイオテクノロジー分野の倫理議論を再燃させる。

Northwestern Medicineの研究者らは、希少変異、多遺伝子、全ゲノムデータを組み合わせることで危険な心拍リズムを早期に予測することを目的とした統合ゲノムリスクスコアを作成した。Cell Reports Medicineに掲載された査読済み研究では、1,119人を分析した。

AIによるレポート 事実確認済み

約109万人の大規模遺伝子解析により、生涯にわたる遺伝的に低いコレステロール、特に非HDLコレステロールが、認知症リスクの大幅な低下と関連していることが示唆された。メンデルランダマイゼーションを使用して、スタチン(HMGCR)やエゼチミブ(NPC1L1)などのコレステロール低下薬の標的の効果を模倣したところ、一部の標的で1 mmol/Lあたりの低下ごとに最大約80%のリスク低下が見られた。([research-information.bris.ac.uk](https://research-information.bris.ac.uk/en/publications/cholesterollowering-drug-targets-reduce-risk-of-dementia-mendelia?utm_source=openai))

マウントサイナイのアイカーン医学校の研究者らが、V2Pと呼ばれる人工知能システムを開発した。このシステムは、遺伝子変異が有害である可能性を評価するだけでなく、それらが引き起こす可能性のある広範な疾患カテゴリを予測する。Nature Communicationsに掲載された論文で記述されたこの手法は、特に希少で複雑な疾患に対する遺伝子診断を加速し、より個別化された治療を支援することを目的としている。

AIによるレポート

研究者らが、人間のDNAが3次元でどのように折りたたまれ、時間とともに再編成されるかを示す、これまでに最も詳細な地図を作成した。この研究は、Northwestern Universityの科学者らが主導する4D Nucleomeプロジェクトの一環で、ゲノムの構造が遺伝子活性や疾患リスクにどのように影響するかを強調している。Natureに掲載された発見は、がんなどの疾患に関連する遺伝子変異の発見を加速させる可能性がある。

 

 

 

このウェブサイトはCookieを使用します

サイトを改善するための分析にCookieを使用します。詳細については、プライバシーポリシーをお読みください。
拒否